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Monodomain equation for cardiac electroph

Solve problem: After space discretization the PDE becomes

1 (C0V+1,,(V,2) =V-(6VV) in Qx[0,T V' =AV - C'I (V,z512,),

m —ion

—oVV-n=0 on 0€2 X [0,T] 7' =A(V)(Z —7 (V))
U = U, on Q X {O} ) ) ) e

Noting y = (V,z;,z,) and
The ionic model 0,z = g(V, z) can be written as

fi(y) = (AV,0,0),
atZE — gE(V’ LB Ze)9 fE(y) — (_ Cn_flllion(y)a gE(y)aO)a
{% = 8V>2) £ = 0,0,AV)(2, = 2, (V) = AW = VooV

with A(y) a diagonal matrix having zeros in the
coordinates corresponding to V,z,, we can write the

g.(V.2,) = A (V)(z, — 7, (V) ODE as:
is a usually a stiff term. vy =) + () + ().

Where g is a nonlinear generally non stiff term and

Where I, E, e stand for implicit, explicit, exponential
terms, respectively.
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IMEX—Rush-Larsen scheme

The IMEX-RL scheme consists in applying sequentially the explicit Euler, exponential Euler, and implicit
Fuler schemes as follows:

1. yl =y + At (AtAG ) .(,),
2. y*=y'+ Atfp(y"),
3. ¥ =y + Afy(y”),

4' yn+l — y37

<

where ¢(z) =

<

The severe stifiness of f, is smoothed out thanks to ¢, the one from the Laplacian is dealt by the implicit
Fuler method.

The exponential term is very cheap to evaluate due to its diagonal form.
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Explicit Stabilized methods

Consider again Properties:
y' =), y(0) =Yyp. e The purpose of adding stages is to increase
One step of any explicit stabilized (ES) method is: stability, not order.
i) Compute approximation p = p <3_f> (power method) | ® Stability grows quadratically with the number of
’ stages s.
ii) Choose the number of stages s such that
Pros:
Atp < fs* e No step size restriction: just increase s,

iii) Iterate:

g =y o = a0+ u At fgp) e Workload proportional to s o \/,5 x 1/Ax,
0 = Yo 1= 80T M 0

8=V 8-1 K g ot WAL[(gi1) J=2,...08 e Fully explicit and easy to implement.
Y1 = &5
with y; ® y(Af) and g; = y(c;Af), 0 <¢c; < ... <c¢, = 1.

\)

Cons: s still depends on p.

Van der Houwen, Sommeijer, Verwer, Lebedev, Abdulle, Medovikov, Vilmart, Rosilho, Almuslimani,...



Multirate Explicit Stabilized methods

Consider the multirate problem Properties of f,:

with: Y =T +75), o Stitness of f, decreases as i grows. For instance:

o fp stift but cheap, O For fr(y) = Ay =) = (e - 1)9

o fo mildly stiff but expensive. O then ]2()’) = @A) (y) -

Define the modified equation o with ¢(z) = eZZ_I < e —100 =80 _602_40 —20 0
Yy = I(y) e For i = 2/pg then p, < ps = p(fy/dy).

with f, the averaged force
1
Sy = () = y)

defined via the auxiliary solution u

e Stifiness of f, depends on fg only.

e No need for scale separation.

u' = fp(u) + fs(y), u(0)=y.

Abdulle A., Grote M., Rosilho G. 2022. 5
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Multirate Explicit Stabilized methods

Consider the multirate problem Discretization via ES methods:

V' =fe(y) + f5(1),

with: Solve

£ otiff bt ch Yy = Jn(¥p)
e f, stifl but cheap,
’ With s stages, where Afpg < Bs?.

o fo mildly stiff but expensive.
Whenever f, needs to be evaluated, solve

Define the modified equation
u' = fr(u) + fs(v),  u(0) =y

Yy =1y (V)
With m stages, where Atp, < Bs*m?.

with f, the averaged force

£O) = “un) — y) e The number of evaluations of f, and f; depends
T 1

. s . only on their stifiness.
defined via the auxiliary solution u

e No interpolations.

u' = fe(u) + f5(y), u0) =y.

e No need for scale separation.

Abdulle A., Grote M., Rosilho G. 2022. v
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Multirate Explicit Stabilized for Monodomai

We solve One step of mES is given by:

' =[O +:0) + L), 80 =Y 81 80 A, (80)

L 8i = Vi8j—1 K&y + WiAlfy(8i1), ] = 2,008,
To solve it with mES we set y o=
n+1 8

fs(0) = fe(y) + Psfo(), With f(y) defined as

Jr) = 1) + Prf(y),
Where Pr + P¢ =1 and Py selects only the very stiff o = uy = g + o (f(up) + f5(y)), |
components of A(y) (one or two). The others become w; = pu;_y + v + an(fp(u;_) + fs(v), j=72,....m,
part of the mildly stiff term f(y). ) = (u,, —up)/n.

e This is an efficient approach when Prf,(y) is not overly stiff. For instance for the Courtemanche, Ramirez,
Nattel, 1998 ionic model.

e For stiffer models, as Ten Tusscher, Panfilov 2006, this entails a too high number of f.(y) evaluations and

efficiency deterioration. .



Exponential Multirate Explicit Stabilized

To recover efficiency even for stiff models, we remove the stiffness arising from Ppfz(y) employing exponentials:

tPrf,(y) —> = ) (tPrA(Y))f.(y)

We still solve

80 =Y 8 = 8 + mALf(80),
g =vg | +Kg_;+ //tiAtfn(gi—l)’ Fori=2,....,s, with s

Yn+1 = 8>

For the multirate stabilized method (mES):

Up =Y,
u; = up + oyn(f(ug) + Prf(uy)
+Ps f.(y) + fe(¥), For
u; = Pty + 1o J = 2o
+Pgf(y) + f()), OIlf] and
£ = (@, = u)/. P

9

depending on fz only.

For the exponential multirate stabilized method (exp-
mES):

Up =Y,
u; = uy + an(fi(ug) + @ (anPrA(ug))Prf (1)
+Pgf(y) +/(¥), For
U; = ,Bjuj_l + YUy J = 2,...,m,
+an(fiu,_y) + ¢ (anPpAu;_)Pgf(u;_)) with m.
depending
+ P f,(¥) + fg(¥)), on £, only.

1, ) = (u,, — up)/n .



Comparison on the benchmark problem

Solve problem e Compare results of IMEX-RL, mES, and exp-
2(CoV+1I,,(V.2)) =V -(cVV) in Qx[0,T mkbis methods.
0,z =8V, 2) in QX [0,7 e We consider two versions of both mES and exp-
—oVV-n=0 on dQ X [0,T] mES, with different stability polynomials defining
U= u, on QX {0} the ES methods.

with usual parameters from Niederer et al 20111 N- o RKC: R(z) oscillates in [—0.95,0.95].

version benchmark, hence
o0 RKW: satisfies |zR(z)| < 1, i.e. mimics L-

_ 3
o Q=20X7X3 mm”, stability as long as z is in the stability domain.

3

e Stimulus in a 1.5 mm” corner for 2ms. R

Show activation times on 10 points along a.

e We solve it with Ten Tusscher, Panfilov (TTP) diagonal line going from (1.5,1.5,1.5) to (20,7,3).

20006 Epi model. e Compare CV and

e Ax =0.1mm and Ar = 0.1 ms or Ar = 0.05 ms. e CPU time.

INiederer, S. et al. Verification of cardiac tissue electrophysiology simulators using an N-version benchmark. Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences, 369, 4331-4351. 10 ,



Comparing CV and activation times @ I

With Ten Tusscher, Panfilov 2006 Epi model. exp-mES Reference value mES
Stab. Fun. RKC Activation times Activation times
N AN 1 601 —— exp mES RKC1,At=0.1 601 —— mES RKC1, At=0.1
- exp_mES RKC1, At =0.05 . mES RKC1, At =0.05
— 40 * — 40- ¢
£ £
| | e CPU=1622 s 20° CPU=1930 s
A I | CPU=3106 s A CPU-3335 s
i 0L . . . o P A— . . .
-200 0 5 10 15 20 5 10 15 20
Stab. Fun. RKW Activation times Activation times
e 601 —— exp mMES RKW1,At=0.1 601 —— mMES RKW1 At=0.1
_‘ Higher damping - exp_mES RKW1, At=0.05 —+— mES RKW1, At =0.05
_ ? — 40 - _ 40 - (3
e More expensive. ‘ £ £
\/\4} 0 20" CPU=17555 %] _~ CPU=2445 s
A CPU=3386 s CPU=3918 g
| | | | | | | | | 0 ! ! T T O T T T T
-50 0 5 10 15 20 5 10 15 20
lpll [mm] lpll [mm]

11

G. Rosilho de Souza



Comparing CV and activation times @ I

With Ten Tusscher 2006 Epi model. exp-mES mES
Activation times Activation times
601 —— exp mES RKC1,At=0.1 601 —— mES RKC1,At=0.1

-~ exXp_mES RKC1, At=0.05 - mES RKC1,At=10.05

IMEX-RL 0.

5 = 407
Activation times .g %
iEa=r= e CPU- 1950
40 S oL CPU=3106 s L CPU=3335 s
= 5 10 15 20 5 10 15 20
= 50 - Activation times Activation times
CPU=1777 s 1 —— exp_mES RKW1,At=0.1 1 —— mES RKW1, At=0.1
CPU=3370 s —+— exp_mES RKW1, At = 0.05 —+— mMES RKW1, At = 0.05
0 5 10 15 20
lpll [mm]
CPU=1755 s CPU=2445 s
CPU=3386 s A CPU=3918 s
10 15 20 5 10 15 20
lpll [mm]

lpll [mm]
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Spectral Deferred Correction (SDC)

Collocation method Deferred correction method

Consider Let ¥y = (¥,...,¥,,) be an approximation y. & y(Atc;)
v = f(y), y(0) =y, computed via a cheaper (preconditioner) method

and fix collocation nodes 0 <¢; < ... <¢, < 1. y=Yot+ K()

Compared to the collocation method, we have
An approximation y; & y(Atc;) € R" satisfies

i) error: 6 =y —¥,

Yi=Yo T Atz a;f(y) 1=1...m ii) residual: € =y, + K(¥y) — ¥,
j=1
y=y,+K(y) €R™" iii) error equation: 6 = ¢ + K(y + 6) — K(¥).
with y = (¥, ..., ¥ Yo = 0Vps -+ Yp) and The error 0 is approximated with

m m S=8+E(S’+5)—E(y)
K(y) = Atz ay f(yy, .- Atz a,,i f () and the approximation is updated as § « ¥ + 0.
j=1 j=1

Dutt, A., Greengard, L., Rokhlin, V. (2000). BIT Numerical Mathematics, 40(2).
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Spectral Deferred Correction (SDC)

Recipe for a (Spectral) Deferred Correction method: | Common choices:
1. Choose the collocation nodes e For collocation method: Radau, Lobatto, Gauss, etc.
0<¢<...<c, < 1. due to their excellent superconvergence, stability, and

_ geometric properties.
2. Choose the cheaper method y =y, + K(¥). 3
e Lor the cheaper method, in general, compute 0, ,

3. Iterate over the error equation from &, by solving the error equation in [c;At, c;, |At].
i) 0=¢e+ E(S" + 0) — E(S’) e Do so using IMEX-RL, mES, exp-mES.
i) § « § 5 Pros:

Accuracy: gain Af” per iteration, with p the order of |e No need to solve large nonlinear systems in R™",

the cheap method. Limit: order of collocation
method. e Competes with standard high-order methods,

e Due to its 1terative nature it’s well suited for PinT

(PFASST).

15
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IMEX-RL, mES, exp-mES and SDC

We compare the IMEX-RL, mES, exp-mES methods combined with SDC.
For the time being, we only want to check whether the SDC sweeps converge or not.

Computational setup:
e Everything implemented in the pySDC library.

e Use three Radau IIA nodes,

e Sweep till convergence with relative tolerance tol = 5 - 107° on the residual. Norm is #,-norm on
y=(V,z2,1Z,).

e Comsider three ionic models with increasing stiffness:

o Hodgkin-Huxley (HH), o Courtemanche, Ramirez, Nattel 1998 (CRN), o Ten Tusscher, Panfilov 2006 Epi (TTP).

e Different step sizes: At = 0.1 ms, At = 0.05 ms, At = 0.01 ms.

e Here we solve the 2D version of the benchmark problem, for simplicity:.

16
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Summary of codes behaviour

Stifiness: p(HH) ~ 35, p(CRN) =~ 130, p(TTP) =~ 950.

mES + SDC exp-mES + SDC IMEX-RL + SDC
At = 0.1 |[Ar=0.05|Ar = 0.01 At =0.1 [Ar=0.05Ar =0.01 At = 0.1 |Ar=0.05|Ar = 0.01
HH | @ | @9 | @ HH | @ | @ | @ HH | @ 9 | @
CRN | & V' V) CRN | € V) V) CRN | € (X &
TTP | € V) & TTP | € X X TTP | €3 (X (X
Not too bad Could be better Could be much better

N -

~

These two schemes use exponentials.

S0, let’s try exponential Runge-Kutta as
underlying method, instead of a standard
collocation method.

This stabilizes multiplications with A(y)

in the residual computation: € =y, + K(y) — ¥

17




Exponential Spectral Deferred Correction (E

Consider equation:

y'=Ay+Ny).
SDC is based on collocation methods. Hence, on ESDC is based on exponential collocation methods.
formula: Hence, on formula:
[ 5
(1) =Yy + J J(y(s))ds (1) = Yo+ J "IN Ayy + N(y(s))ds
0 0
and its discretization and its discretization
Vi =Yo+ At ) ayf(y) i=1...m, Vi = Yo+ At ) a (AN Ay, + N(yp) i=1,....m,
j=1 j=1
with with
a;; = J f](s)ds aij(AtA) — J' e(ci_S)AtAfj(S)dS
0 0

Buvoli, T. (2020). A class of exponential integrators based on spectral deferred correction. SIAM Journal on Scientific Computing, 42(1), A1-A27.
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ESDC for monodomain equation

e Write
V' =1 +,(y) +fe(y)
= AW — Yy ) +/;(y) + f5(y)
= Ay +1(y) + () + A — Yoo () — A(y,)y
‘ /(y - NZY) J
e Since
Then

azj(AtA)fI(yj) — azjfly]'» aij(AtA)fE(yj) — azjnyja

hence f;, fr terms are integrated with the standard SDC method, while f, with ESDC.

19
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Summary of codes behaviour

exp-mES + SDC

IMEX-RL + SDC

mES + SDC
At =0.1 |Ar = 0.05|Ar = 0.01
|| @ | 9@ | @
cRY | @ | @ | ©
TTP (X V) V)
mES + ESDC
At =0.1 |Ar = 0.05|Ar = 0.01
HH || @ | @ | @
CRN | & V) &
TTP (X & &

Ar=0.1 |Ar =0.05|Ar = 0.01
HH | @ | @ @
CRN | € V) V)
P | Q| Q| ©
exp-mES + ESDC

Ar=0.1 |Ar =0.05|Ar = 0.01
HH | @ | @ @
CRN | & V) V)
TTP | € V) V)

\\_. To be investigated.... <-J

20

At =0.1 |Ar = 0.05|A7 = 0.01
He | @ @ 9 | @
RN | © | © | @
TTP (X X S
IMEX-RL + ESDC

At =0.1 |Ar =0.05/Af = 0.01
He | @ | 9 | @
CRN | & V) V)
e | @ | © | ©

WOW!! &
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Conclusions

o Lixplicit schemes, when properly stabilized, can be competitive and should be considered
e Standard SDC sweeps can become unstable as the stifiness of the ionic model increases

e It is probable that instabilities are introduced during residual computation, where exponentials are not
employed.

e Preliminary results indicate that exponential SDC solves this issue.
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