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Introduction to explicit stabilized method:

We want to solve, for instance,

y'=V-(AQYVy) +f).
We typically have:

Standard explicit solver: At < Ch?,

Implicit solver: solves nonlinear problem.

With explicit stabilized methods:
® No step size At restrictions,

® No linear systems to solve.

Some differences with respect to standard
explicit methods:

e Adaptive in the number of stages s,

e Given an order p, use an increased number
of stages s > p,

@ (Gained freedom is used to optimise in the
stability direction,

e Stability domain grows as O(s?),

e Work load scales as 0(\/,5) = O(h™1), not
as O(p) = O(h™).




Literature Review (without deprecated

For general dissipative problems y’ = f(y): In mixed precision arithmetic:

e RKCI1, RKC2 (Van der Houwen & Sommeijer, 1980), | ® MP-mRKC (Croci, Rosilho, 2022).
e ROCK2, ROCK4 (Abdulle & Medovikov, 2001), For SDEs dX = f(X)dr + g(X)dW:

e RKLI1, RKL2 (Meyer, Balsara, Aslam, 2014). e SK-ROCK (Abdulle Vilmart Almuslimani, 2018).
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For advection-diffusion-reactio F(X )dr + fo(X)dr + g(X)dW:
T Mlssmg PmT method

e PRKC (Zbinden, 2011), L e —E T —————— osﬂho 2021).

e PIROCK (Abdulle & Vilmart, 2013), For chemical kinetics §; = S, = S5:

o IMPRKC (Tang & Xiao, 2020), e SK--ROCK (Abdulle, Rosilho, Gander, 2021),

o ARKC (Almuslimani, 2022). For jump SDEs dX = f(X)dr + g(X)dW + Jh(X)dN :

For multirate problems y" = fn(y) + f(y):
e SK-JD-ROCK (Chanay, Rosilho, 2021).

e mRKC (Abdulle, Rosilho, Grote, 2021). .




Example of practical application

Human ischemic stroke in 3D (Dumont et al., 2013)

System of 15 reaction-diffusion PDEs, plus 4
reactions

y'=Ay+ F(y),

ROCK4 for diffusion and RADAUS5 for

reaction.

DU_e to the explicit Stabilized method no large T. Dumont et al./Commun Nonlinear Sci Numer Simulat 18 (2013) 1539-1557
linear system is solved and realistic
simulations can be run on a workstation.




Construction of explicit stabilized methods

1. Search for a family of polynomials P, : [—wy, wy] = [—P(®y), P.(w)]

2. with P{(wy)/P(wy) large and increasing in s. Typically P(wy)/P (@) = O(s?).

P(w
3. Set R(z2) = P(wy)'P, (w0+ Pi O;Z)’
s\

4. then R(0) = R(0) =1 and yields a first-order method.

P (@) ,
5. Also, |R(2)| < 1 for |z]| < £, := 2w, = 0(s?).
PS(O)O)

6. Find a Runge-Kutta method having R (z) as stability polynomial.
Warning: due to the high number of stages, internal stability is a concern.




Example: Runge-Kutta-Chebyshev (RKC)

1. Let wy =1 and consider Chebyshev polynomials
Iyx)=1, T\(x)=x, T,(x)=2xT, _(x)—T, _»(x)

that satisfy T, : [—=1,1] = [=1,1], T,(1) = 1 and T(1) = s*.

2. Hence T/(1)/T(1) = s*

3. AndR(x) =T (1+éz) with |R.(2)| < 1 for |z]| < 7, = 252

o l w R(D) = o
\ ‘65 s = 10
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Considering different values for o,

1. With s =10, o, = 1:
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2. With s =10, wy = 1 + €/5%, & = 0.05:
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3. With s =10, wy=1+¢/s%, e = 1:
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Considering different polynomials

1. With s =10, @y = 1 and first kind Chebyshev polynomials (RKC, 1980)
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2. With s =10, wy = 1 and Legendre polynomials (RKL, 2014)
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3. With s = 10, wy = 1 and second kind Chebyshev polynomials (RKU, April 2022)
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Explicit stabilized Runge-Kutta method

It remains to find a Runge-Kutta method with R(z) as stability polynomial.

Explicit stabilized methods with good internal stability properties rely on the recursive
formula (typical of orthogonal polynomials) for P (x):

Px)=1, Px)=ax, Px)=(@x+b)P, (x)+c,P, ,(x)

Then a Runge-Kutta method

Ko = Vs ky = ko + 1At f(ky),
kj = //t]Atf(k]—l) + I/j kj—l + K:] kj—2’ ] = 2,...,5,

Yn+l = ks
with R (z) as stability polynomial exists.

Number of stages s is chosen according to Atp < £, with p = p(df/dy).
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Parareal with explicit stabilized methods

The Parareal scheme for parallel in time We define the propagators F, G as RKC
integration is: schemes (Chebyshev polynomials), where
e Compute a first coarse solution {y’ N o G(y,t,t 1) employs step size Af. and the
number of stages s. is chosen according to
Vst = GOy b 1) Atp <€ = 2s°
with G providing a rough approximation of |® F(y,,,,1,,,) employs step size At, K Af,.
y(t,. 1), with y' = f(y), y(z,) = yY. Number of stages s, is according to
Atp < 7.

e Iterate and correct the solutions:
. . Similar PinT schemes are defined using RKL
Ynet = F Qs by 1) (Legendre) or RKU (second kind
+GOM et ) — GOSNt ), Chebyshev).

n

with F' providing a fine approximation.
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Numerical experiment: heat equation

Consider € = [0,5]cm, T = 2400ms and We discretise with FD and Ax = 0.01, then
0y = UAy + 1 (7). inQ % [0.7] solve the problem with
Vy ‘1l = Oa o1l aQ X [OaT]a ® N — 24 threads,
y =0, inQ x {0},

o Ar.=T/N = 100ms,
v =107 and I (¢) a stimulus.

o Aty =0.1ms.
500 -
” Note:
0.
° 0 e For explicit Euler Az < 0.05,

X 0 0 e Implicit Euler do not capture the stimulus.
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PinT-RKC on heat equation @ I

We set wy, = 1 + €/5%, e = 0.05. The number of stages are s. = 47, Sp = 2.
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Parareal convergence factor

From the reSU]'tS Of SIAM J. Sc1. COMPUT. (© 2007 Society for Industrial and Applied Mathematics

Vol. 29, No. 2, pp. 556578

ANALYSIS OF THE PARAREAL TIME-PARALLEL
TIME-INTEGRATION METHOD*

MARTIN J. GANDERT AND STEFAN VANDEWALLE?

We know that the convergence factor of Parareal is

1 — ‘Rc(Atc/I) ‘

K(A) =

Here

R(2) =R, (z) and R(z) = R, ()*2".
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PinT-RKC convergence factor

The convergence factor of RKC with w, = 1 + €/s%, € = 0.05 is:
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The convergence factor of RKC with wy, =1+ &/s%, € =1 is:
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PinT-RKC on heat equation @ I

We set wy, = 1 + €/5%, e = 1. The number of stages are s.= 58, Sp = 2.
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Numerical experiment: Monodomain model

Consider € = [0,5]cm, T = 2400ms and We again discretise with FD and solve the

0,y = VAYy — L;y,(y,2) + 1(2),
z' =g, 2)
Vy-n=20,
y =0,
z=0,

v =107, 1(?) a stimulus, I, ,g an 1onic

) Tion?
model and 7z its state variables:

L, (v,2) =—ayQy—a)(l—y) + a3z,

g(y,2) = by(y — byz2).

problem with N = 24 threads, Af. = 100ms,
inQ x[0,7] At = 0.1ms.
1n 2 X [0,7]
on 0€2 X [0,7],
n €2 x {0},
2 x {0}, 1.
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PinT-RKC on Monodomain model @ I

We set wy, = 1 + €/5%, e = 1. The number of stages are s.= 58, Sp = 2.
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PinT-RKC convergence factor

| | |

The convergence factor of RKC with wy =1 + €/s%, e = 1 is:
1 |
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The convergence factor of RKC with wy = 1 + €/s?, € = 3 is:

10.95

-40 -30 -20 -10 0

19




Universita
della
Svizzera
italiana

PinT-RKC on Monodomain model

We set wy, = 1 + €/5%, € = 3. The number of stages are s.= 73, Sp = 2.

1.5 2.
iy Yy
1 iy 1.5. y?
_ 05, 1
0. 0.5.
05, 0
5 5
0 2000 1500 1000 500 O 0 5000 1500 1000 500 O
1. 1.5
iy Yy
myt my®
0 2000 1500 1000 500 O 0 5000 1500 1000 500 O

X t Z t

20




PinT-RKI1, on Monodomain model @ I

We set @y = 1. The number of stages are s, =73, 5, = 2.
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PinT-RKC and RKL convergence factors

The convergence factor of RKC with wy =1+ &/s%, € = 3 is:

—H(A)
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A
The convergence factor of RKL with @y =1 is:
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PinT-RKU on Monodomain model

We set @y = 1. The number of stages are s, =79, s, = 2.
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PinT-RKU convergence factor

The convergence factor of RKC with wy =1+ &/s%, € = 3 is:
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The convergence factor of RKU with oy =1 is:
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TODOs

® Better understanding of stability properties of PinT explicit stabilized methods,

e Maybe consider different correction formula than G(y**',¢ .t . ) — GO t.t .) ?

e lonic model I, g is in general multiscale and stiff. Consider Rush-Larsen for some ionic
variables.

@ Not all stifiness is removed by Rush-Larsen. Hence we can consider a multirate version of
explicit stabilized methods:

1. Replace f(y) = f¢(y) + f-(y) with a less stiff

"
S, () =fs(y)+ﬂ Jr(u)ds = %(u(n) - ),
0
with u' = f(y) + fr(u), u(0) = y.

2. Solve y" = f,(y) instead of y" = fo(y) + fr(y).
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