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Motivating Mixed-Precision Arithmetic

Irom.:

Mixed-precision algorithms combine low- and high-precision computations in order to benefit

e Performance, energy, and memory gains of low-precision,

@ Accuracy of high-precision.

Format unit roundoff u
bfloat16 (half) 278 ~3.91 x 10~3
fpl6 (ha 2711 ~ 488 x 1074
fo ingle 2724 ~ 5.96 x 1078

fp64 (double) ) 2793 ~ 1.11 x 10716

Trend: roundoff unit u 1s getting larger!!!

The numerical linear algebra community 1is
very active in the field, designing
factorizations, direct methods, and Krylov
subspace methods in mixed-precision
arithmetic.

All major chip manufacturers (AMD, ARM,
NVIDIA, Intel, ...) have commercialized
chips supporting low-precision
computations.
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Mixed precision integration

Assumptions, computational setup, and notation:
e Computations in high-precision arithmetic are assumed to be correct.

® LFor low-precision computations an emulator is employed. We do not have access to chips
supporting low-precision arithmetic yet.

® u is the roundoff unit of the low-precision format: u ~ 1077.

e Computations performed in low precision are denoted by a hat =~ , the error model is:

A

aopb =(l1+0)aopb), |o|<u, ope+,—,%,/},

N

Remember: produces a relative error ~ u ~ 1073,

4
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Mixed precision integration

Motivating example on a linear problem For y, = y, + AtAy,:
Consider Try 1
y=Ay, 30 =y, $1 = Yo+ AiAYy = (1 +8)( + Ardyy
and the integrators For accuracy = Yo+ AtAyy + O(u).
v = Yo + AtAy,, / Local error: O(u).
Vi = Yo+ AtAy, + %AtzAzy , Global error: O(uAt™1).
Vi = Yo+ AtAy, + cAtzAzyO . Divergence

For stability

Goal: design mixed-precision versions of these
integrators preserving the original accuracy.

G. Rosilho de Souza



Mixed precision integration

Motivating example on a linear problem For y, = y, + AtAy,:
Consider Try 2:
y'=Ay,  ¥(0) =y, $1 =y + AtAy, =y, + AtAy, + AtAAy,

and the integrators = Yo + AtAyy + O(Atu) .

Vi = yo + ArAy,, Local error: O(Atu).

1
y; = yo + AtAy, + EAzzAzy , Global error: O(u).
y; = Yo + AtAy, + cAt°A%y, . Saturation

Goal: design mixed-precision versions of these
integrators preserving the original accuracy.
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Mixed precision integration

Motivating example on a linear problem

Consider R
| For accuracy

y' = Ay, y(0) =y,

A

~ 1 2 A2
V1 =Y+ AtAy, + —At° A%y,

and the integrators o)
y1 = Yo + AtAY,, = yy + AtAy, + %AtzAzyO + O(At*u) .
Y1 =Y + AtAy, + %AtzAzy ’ Local error: O(At*u).
y1 = Yo+ AtAy + cArATy,. Global error: G(Atu)

Order reduction
Goal: design mixed-precision versions of these
integrators preserving the original accuracy.
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Mixed-precision integration

Motivating example on a linear problem For y, = y, + AtAy, + cAt?A%y,, ¢ # 1/2:
Consider Iry 4: \— For stability
=Ay,  ¥(0) = . ——

Y Y yO) = Yo V1 =Y+ AtAy, + cAtzAzyO
and the integrators =y, + AtAy, + cAtzAzyO + @(Atzu) .
Y1 = Yo + AtAYy), Local error: O(At*u).
1
Y1 = Yo+ AtAy, + EAtzAzy , (Global error: O(Atu).

_ 242
Y1 = Yo+ AtAyy + cAt"A%Yy; . Same order of convergence
Conclusion: harder to work with methods
where coeflicients are optimized for accuracy:.

Goal: design mixed-precision versions of these | i
But we can play with the stabilization terms.

integrators preserving the original accuracy.
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Introduction to explicit stabilized methods

We want to solve, for instance, Some differences with respect to standard

explicit methods:
y'=V-(AQY) Vy) +1y).

e Adaptive in the number of stages s,
We typically have:

e Given an order p, use an increased number
Standard eXphCIt SOIV@I': At S Chz, Of Stages < Z D,

Impll(:lt SOIV@I': SOIVGS Honlinear prOblem. o Gained freedom 1S used to Optimise 1N the

stability direction,

. o . e Stability domain grows as O(s?),
With explicit stabilized methods:

e Work load scales as O(\/,E) = O(h™1), not
as O(p) = O(h™).

® No step size Af restrictions,

® No linear systems to solve.
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The Runge-Kutta-Chebyshev method

Consider ® No step size restriction,

V=), ¥O0)=y,.
e Fully explicit,

One step of RKC in o6-form is given by

dO — Oa dl — /’tlAt f(y())a

d=v;d_+K d_,+ At fyo+d_,), j=2,...5 We note that the method needs:

e Straightforward to implement.

1= Yo+ di; e Only p = 1,2 function evaluations for
accuracy,
with s satisfying Atp < 2s°.
10 e and s — p for stability.
s =1 —
s=135 * 0 %’ But every evaluation contributes to both,
s =10 = |accuracy and stability! For a mixed-precision
. . | | -10 .
900 150 100 50 0 version, we need to retactor the method.

10
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The Mixed-Precision Runge-Kutta-Chebyshe

Original method: Mixed-precision method:
dy = 0, dy = u At (), dy = 0, dy = u At (),
di=v,d_|+K d_,+ At f(yo+d_p), j=2,...5s,

c{]. = v dj_l + K; dj_2 + //tjAt (f(yo) + J(yo)dj_1>
yl — y() + dsa

Y1 :yO_I_ds’

Jm_l 1s computed with one low-precision

Linearized method: evaluation of f

dy =0, d; = pu At f(yy),

di=v;di_| +K di_,+ pAt (f()’o) + J(yo)él;-_1>
yl — )’o + dsa

Cost:

@ | function evaluation in high-precision,

® s — | function evaluation in low-precision.

11
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Low-precision Jacobian’s computation

The mixed-precision RKC method is:

dy=0, dy=mArf(yy), di=v;d_+kd_,+pAt (f(yo) + J(yo)dj_l)

A

How do we approximate the Jacobian J(y,)d; efliciently in low-precision?

Nailve approach:

IG5, = = foig + d) = f3g) = foip + i) — ) + Ow)
= J(yp)d; + O(u + ||4}||*) = J(yp)d; + O(u + Ar?)

Local error: O(Atu), Global error: O(u).

12
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Low-precision Jacobian’s computation

The mixed-precision RKC method is:

dy=0, dy=mArf(yy), di=v;d_+kd_,+pAt (f(yo) + J(yo)dj_l)

A

How do we approximate the Jacobian J(y,)d; efliciently in low-precision?

Smarter approach:

T00d; : = e (foo + ed) = o)) = e (£ + ed) = fyg) + Ow))

=¢”! (J(yo)edj + O(u + esz,-Hz)) = J(yp)d; + O(e™'u + eAr?)

Take € = \/u/At, then O(e'u + eAr?) = O(AW/ u).

Local error: @(Atzﬁ), (zlobal error: @(At\/Z).

13
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Convergence and stability

Convergence

The error between the high-precision and the mixed-precision RKC method is!

1V, = YVl = @(At\/ﬁ) i. ,

second-order scheme exists, with|

by __Inohi=oan)

e Roundoff errors destroy any spectral relationship between the error term and the solution,
e A stability analysis in the classical sense is undoable,

® The best that we can do is a worst-case analysis that doesn’t take into account roundoft
errors’ cancellationl,

® Numerical experiments show that our mixed-precision schemes are stablel.

1 M. Croci, G. Rosilho de Souza, Journal of Computational Physic, 464, 2022.
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Stability Check

— = 100Au in Qx[0.7], 10"
u(x, 1) =0 on 0€2 X [0,7T], 101
u(x,0) = uy(x) in €2,
= 10~
with Q =1[0,1] X [0,1], T = 1. >
For different mesh sizes and fixed At, we =107
check that the norm decreases.
10~
10~
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Convergence experiment

SOlve l()_ 1| R O *

0
0_’;‘ =V -(IVul?Vu) +f(x)  in Qx[0,T],

ulx,t) =1 on 0€2 X [0,77],
u(x,0) =1 in €2,

10~
10~
10— ——

with Q =1[0,1], T = 1.

For h=1/32 =0.03125 and fixed s =32 we
let At —> 0 and plot the errors

107

107°;

relative time discr. error (L°° norm)
\

I A N1 (o
—iu. —u t - - RKCI (\ — v.).Z‘)
u H L ( n)HL ((0,1),L%(£2)) --%-- couble <o std. mixed

10~ ,.
—& - OP mixed — O(At)

For both RKC1 and RKC2.

10~ 10~
At
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Convergence experiment

Solve P P R R N
ou 2 - 10-2
= =V - (|[Vul[5Vu) + f(x) in QX [0,7], .
ulx,t) =1 on 02 X [0,7], o4
u(x,0) =1 in €,

with Q =1[0,1], T = 1.

For h =1/32 =0.03125 and fixed s =32 we

let At = 0 and plot the errors 107

RKC2 (s = 32)

relative time discr. error (L norm)

1~
= | U, — “(tn) HL°°((O,T),L°°(Q))

— 10
10 --%--  double e std. mixed
—4& - OP mixed —  O(At?)
For both RKC1 and RKC2. |
10~
At
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Mixed precision multirate RKC method

Consider The averaged force is defined as
Y =)+, v0) =y, 1) = = (un) = y)

with fr stiff but cheap and f; mildly stiff but | With auxiliary solution u given by
exXpensive.

u' = fe(u) + fs(y), u(0) =y.

For RKC, number of expensive f¢ evaluations

is dictated by the few stiff terms in f. The multirate RKC method is given by:
We solve the modified problem e Integrate y, = f,(y,) with a RKC method.
Yy =Sy (V) y(0) =y, e To evaluate f, solve u’ = fp(u) + fs(y) with

another RKC method.
With # > 0 a parameter used to tune the

stifiness. For n = O(p¢ 1y and the stiffness of I
IS same as f.

18
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Mixed precision multirate RKC method

The multirate RKC method: The mixed-precision multirate RKC method:
dy =0, d, = u At ]?;7()}0)9 dy = 0, d, = pu, At f,?(yo),

=0 o+ 05 G R AT 00 o) =25 | =y d i d e (£,00) + 4,004 )
Y1 = Yo+ d, v = yo+d,

With Afpg < 2s* and

hy =0, hy = o (fE(y) + f5()),
hy = Bli_y + v+ a(fe(y + nhy_y) + f5(0)),

713 = By o J,(Vo)d;,_, computed applying a low-
precision RKC method to f,(y).

® fn(yo) computed applying a mixed-precision
RKC method to f,(y).

Where np, < 2m?. Cost is:

e s evaluations of f; in high-precision, e | evaluation of [, f¢ in high-precision,

. L .. ® Remaining evaluations in low-precision.
® 5 - m evaluations of f; in high-precision.

19
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Numerical experiments

Solve |
1()') WY T S N +*
ou .
a_ = 100Au +fs(l/l, X) in €2 X [O,T], —  10b
! =
u(x, 1) =0 on 0Q x [0,T], =
- 8 107
u(x,0) = up(x) in €, =
= 10!
We fix mesh size h = 0.0156 and check 3
convergence for At — 0. < 1072
Plot errors £ 10-3
| = mRKC1
_Hl/lzn o u(tn)H VS At 10~ -=k-- couble e std. mixed
y —& - OP mixed — O(At)
With fixed s = m = 10. 1077 10
At
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Numerical experiments

Solve

ou

ot
u(x,t) =0

u(x,0) = uy(x)

— =Apu 4+ Agu+fy(x) in Qx[0,7T1],

on 0Q2 X [0,7],
n €,

21
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Conclusions

Mixed-precision explicit stabilized methods for

y =)
e Only 1 high-precision evaluation of f,
e s — | evaluations of fin low-precision, with s = @(\/,E).
@ Order 1 and 2 methods,

e Order of convergence is preserved (proved),

e >Stability is very hard to prove. Numerically, we never incurred into stability problems.

22
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Conclusions

Multirate mixed-precision explicit stabilized methods for

V' =Jr(y) +f5(y)

e Only I high-precision evaluation of f, fs,

e s — | evaluations of f¢ in low-precision, with s depending on stifiness of f; only: s = @(\@).
e s -m — 1 evaluations of f; in low-precision, with s - m = @(«\%‘)

e Order 1 method,

e Order of convergence is preserved (proved),

e >Stability is very hard to prove. Numerically, we never incurred into stability problems.

23
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® Design a Parallel-in-Time version of explicit stabilized methods.

When we have access to hardware supporting low-precision arithmetic:
@ Implement Parallel-in-Time mixed-precision methods on this hardware.

e Mixed-precision methods for stochastic differential equations are easily derived from the
current ones. It remains to test them.

24
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