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Problem statement

Multirate ODE

Solve the stiff system

y′ = f (y) := fF(y) + fS(y),

y(0) = y0.

Term Stiff ? Cost ?
fF stiff cheap
fS nonstiff expensive
fF + fS stiff expensive

� Common methods are explicit or implicit, both with their
advantages and disadvantages.

� But there’s also a family in between: explicit stabilized methods.
fully explicit,
stability domain grows quadratically with function
evaluations,
no step size restrictions.

Very efficient for large stiff nonlinear problems.
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Problem statement

ODE

Solve the stiff system

y′ = f (y),

y(0) = y0.

Term Stiff ? Cost ?

fF stiff cheap
fS nonstiff expensive

f stiff expensive

RKC (Van der Houwen and Sommeijer, 1980)

� τ the step size, ρ spectral radius of ∂f/∂y,
� s ∈ N such that τρ ≤ 2s2.

k0 = yn, k1 = k0 + µ1τ f (k0),

kj = νjkj−1 − κjkj−2 + µjτ f (kj−1) for j = 2, . . . , s,

yn+1 = ks.
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Term Stiff ? Cost ?
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RKC (Van der Houwen and Sommeijer, 1980)

� τ the step size, ρ spectral radius of ∂fF/∂y + ∂fS/∂y,
� s ∈ N such that τρ ≤ 2s2.

k0 = yn, k1 = k0 + µ1τ (fF(k0) + fS(k0)),
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Our goals

Goals:
� Design a multirate RKC (mRKC) method and recover the

efficiency of RKC (Abdulle et al., 2020) (today).
� Use a methodology which can be extended to multirate SDEs

(Abdulle and Rosilho de Souza, 2020) (not today).

Spoiler on mRKC:
� fully explicit,
� no need for scale separation,
� stable on a large region along the negative real axis,
� first-order accurate (we aim at SDEs, not high order).
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Modified multirate equation

Idea

Shrink the spectrum of fF and integrate a modified equation.

Original problem

y′ = f (y) = fF(y) + fS(y).

Spectral properties:

fF

fS

+

=

f

Modified equation

y′η = fη(yη) with η ≥ 0.

For η = 0 it holds fη = f hence:

fF

fS

+

=

fη
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The averaged force fη

Properties of fη

� fη = f +O (η), � ρη ≤ ρS � ρ.

Definition of fη

Let y ∈ Rn and u : [0, η]→ Rn such that

u′ = fF(u) + fS(y), u(0) = y.

Let
fη(y) :=

1
η

(u(η)− y) = fS(y) +
1
η

∫ η

0
fF(u(s)) ds.

Advantages:
� Evaluation cost of fη is comparable to fF + fS, as fS is frozen.
� Stiffness is reduced thanks to the smoothing effect of fF.

G. Rosilho de Souza Multirate explicit stabilized methods based on a modified equation 5/12



The averaged force fη

Properties of fη

� fη = f +O (η), � ρη ≤ ρS � ρ.

Definition of fη

Let y ∈ Rn and u : [0, η]→ Rn such that

u′ = fF(u) + fS(y), u(0) = y.

Let
fη(y) :=

1
η

(u(η)− y) = fS(y) +
1
η

∫ η

0
fF(u(s)) ds.

Advantages:
� Evaluation cost of fη is comparable to fF + fS, as fS is frozen.
� Stiffness is reduced thanks to the smoothing effect of fF.

G. Rosilho de Souza Multirate explicit stabilized methods based on a modified equation 5/12



The averaged force fη

Properties of fη

� fη = f +O (η), � ρη ≤ ρS � ρ.

Definition of fη

Let y ∈ Rn and u : [0, η]→ Rn such that

u′ = fF(u) + fS(y), u(0) = y.

Let
fη(y) :=

1
η

(u(η)− y) = fS(y) +
1
η

∫ η

0
fF(u(s)) ds.

Advantages:
� Evaluation cost of fη is comparable to fF + fS, as fS is frozen.
� Stiffness is reduced thanks to the smoothing effect of fF.

G. Rosilho de Souza Multirate explicit stabilized methods based on a modified equation 5/12



The smoothing effect

Theorem

Let fF(y) = AF y with AF ∈ Rn×n negative definite. Then

fη(y) = ϕ(η AF) f (y), with ϕ(z) =
ez − 1

z
.

� AF < 0 and ϕ(z) ∈ (0, 1) for z < 0:
ϕ(η AF) has a smoothing effect on
f (y),

� η ≥ 0 is a free parameter used to
tune the smoothing effect as needed.

0−50−100

0

1
ϕ(z)
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Stiffness of the modified equation

Let the multirate test equation be defined by

y′ = fF(y) + fS(y) = λy + ζy, λ, ζ ≤ 0.

Then
fη(y) = ϕ(ηλ)(λ+ ζ)y.

Goal: choose η such that spectrum of fη is comparable to the one of
fS. Hence, we want |ϕ(ηλ)(λ+ ζ)| ≤ |ζ|.

Lemma

It holds

|ϕ(ηλ)(λ+ ζ)| ≤ |ζ|

for all λ ≤ 0 if, and only if,
η ≥ 2/|ζ|. 0 2/|ζ| 0.4 0.6 0.8 1

0

20

40

η

|ϕ(ηλ)(λ+ ζ)|, λ = −1

|ϕ(ηλ)(λ+ ζ)|, λ = −103

|ζ| = 10
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Modified multirate equation

Modified multirate equation

Solve

y′η = fη(yη), yη(0) = y0

with

fη(y) =
1
η

(u(η)− y),

where u is defined by

u′ = fF(u) + fS(y), u(0) = y, η = 2/ρS

and ρS is the spectral radius of the Jacobian of fS.

Integrated numerically =⇒ different spectral properties
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Multirate RKC scheme

Definition of the mRKC scheme

Let τ > 0 be the step size, integrate

y′η = fη(yη), yη(0) = y0,

using an s-stage RKC scheme, where τρS ≤ 2s2. The right-hand side
fη is defined by

fη(u0) =
1
η

(uη − u0),

where uη is an approximation of u(η), solution of

u′ = fF(u) + fS(u0), u(0) = u0, η = 3τ/s2,

obtained by one step of an m-stage RKC scheme, where ηρF ≤ 2m2.

Theorem

The scheme is stable and is first-order accurate.
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Numerical experiment: diffusion through a narrow channel

Solve
∂tu−∆u = F in Ωδ × [0,T],

∇u · n = 0 in ∂Ωδ × [0,T],

u = 0 in Ωδ × {0},
using first-order DG in space:(

∂tuh
∂tuH

)
=

(
∆huh

0

)
︸ ︷︷ ︸

Fast

+

(
Fh

∆HuH + FH

)
.︸ ︷︷ ︸

Slow

� As δ → 0 the elements in the channel
get smaller.

� For varying channel width δ, compare
the efficiencies of mRKC and RKC.

Ωδ

δ = 1/128

δ = 1/8

Ωδ

δ = 1/128

δ = 1/8

Ωδ

δ = 1/128

δ = 1/8
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Numerical experiment: diffusion through a narrow channel
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Outlook

Done:
� Extension to multirate SDEs (Abdulle and Rosilho de Souza,

2020)

dX = fF(X) dt + fS(X) dt + g(X) dW, X(0) = X0.

Work in progress:
� Mixed precision mRKC (Croci and Rosilho de Souza, 2021):

accuracy steps done in double precision,
stability steps done in half precision.

Preliminary results are very promising.

To do:
� Extension to multirate SDEs driven by jump-diffusion processes.
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