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Motivating stabilized explicit methods

Stiff ordinary differential equation

y′ =f (y), t > 0,

y(0) =y0.

C− Im(λ)

Re(λ)
λ(∂f/∂y)

Explicit Euler

yn+1 = yn + τ f (yn)

� Straightforward to
implement,

� cheap to evaluate.

Implicit Euler

yn+1 = yn + τ f (yn+1)

� Needs non linear solver
routine, preconditioners,

� expensive.
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Motivating stabilized explicit methods

Dahlquist test equation

y′ =λy, t > 0,

y(0) =y0.

C− Im(λ)

Re(λ)
λ

Explicit Euler

yn+1 =(1 + τλ)yn

=R(τλ)yn

� R(z) = 1 + z,
� |R(z)| ≤ 1 for z ∈ [−2, 0],
� stability condition τ ≤ 2

|λ| .

Implicit Euler

yn+1 =(1− τλ)−1yn

=R(τλ)yn

� R(z) = (1− z)−1

� |R(z)| ≤ 1 for all Re(z) ≤ 0,
� unconditionally stable.
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Motivating stabilized explicit methods

Space discretized parabolic equation

y′ =∆hy, t > 0,

y(0) =y0,

C− Im(λ)

Re(λ)
λ ∈ [−C/h2, 0]

where h is the smallest element size.

Explicit Euler

yn+1 = (I + τ∆h)yn,

with

τ ≤ 2
|λ|

= O
(

h2
)
.

Implicit Euler

yn+1 = (I − τ∆h)−1yn,

hence

large system to solve.
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Construction of stabilized explicit Runge–Kutta methods

Goal

Given a fixed number of stages s, find a first order explicit scheme
with maximal stability domain along the negative real axis.

The stability polynomial of such a scheme solves the following

Optimization problem (Markoff, 1916; Guillou and Lago, 1960)

Find a polynomial Rs(x) of degree s satisfying

Rs(0) = R′s(0) = 1

and
|Rs(z)| ≤ 1 for z ∈ [−`s, 0] with `s maximal.
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Construction of stabilized explicit Runge–Kutta methods

The solution to the optimization problem is

Rs(z) =Ts

(
1 +

z
s2

)
, with

{
Rs(0) = R′s(0) = 1,
|Rs(z)| ≤ 1 ∀ z ∈ [−2s2, 0],

where Ts(x) is the Chebyshev polynomial of the first kind of degree s.

0−50−100−150−200
−1

0

1

z

R5(z)
R10(z)
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Consequences

� For each s, there is a first-order accurate polynomial Rs(z)
satisfying |Rs(z)| ≤ 1 for all z ∈ [−2s2, 0].

� The stability condition on a Runge–Kutta scheme having Rs(z)
as stability polynomial is

τρ ≤2s2, ρ = ρ

(
∂f
∂y

)
.

� Instead of adapting the step size τ we can simply take s larger.
� There is no step size restriction.
� The size of the stability domain of this family of Runge–Kutta

schemes grows quadratically with the number of stages.

G. Rosilho de Souza Multirate stabilized explicit methods for deterministic and stochastic differential equations 6/43



Runge–Kutta–Chebyshev method

From the recursive property

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x).

we can derive a Runge–Kutta scheme having Rs(z) as stability
polynomial (Van der Houwen and Sommeijer, 1980).

Runge–Kutta–Chebyshev (RKC) method

Set s ∈ N such that τρ ≤ 2s2. Iterate

k0 =yn,

k1 =k0 + µ1τ f (k0),

kj =νjkj−1 − κjkj−2 + µjτ f (kj−1) for j = 2, . . . , s,

yn+1 =ks.

For y′ = λy and z = τλ it holds: yn+1 = Ts

(
1 + z

s2

)
yn = Rs(z)yn.
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Cost of the RKC method

We estimate the cost, in the number of function evaluations, when
integrating from t = 0 to t = 1.

� For RKC: take τ = 1, since τρ ≤ 2s2 then s =
√
ρ/2:

CRKC = s =

√
ρ

2
.

� For explicit Euler: take τ = 2/ρ and 1/τ time steps:

CEE =
1
τ

=
ρ

2
.

� For ρ = C/h2:

CRKC =

√
C
2

1
h
, CEE =

C
2

1
h2 .

� Comparison with implicit Euler depends on a multitude of
factors: system size, non linearity, preconditioners, parallelism,...

G. Rosilho de Souza Multirate stabilized explicit methods for deterministic and stochastic differential equations 8/43



Stability domain

S = {z ∈ C− : |Rs(z)| ≤ 1}

C−

S for explicit Euler.

C−

S for explicit Euler.

C−

S for s = 10, s = 5.

� Problem: unstable in
imaginary direction.

� Replace Ts

(
1 + z

s2

)
by

Rs(z) =
Ts(ω0 + ω1z)

Ts(ω0)
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(
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Rs(z) =
Ts(ω0 + ω1z)
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C−

S for s = 10, s = 5. Damped.
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Numerical experiment

Solve ∂tu−∆u = f in Ωδ × [0,T],

∇u · n = 0 in ∂Ωδ × [0,T],

u = 0 in Ωδ × {0},

in a domain Ωδ containing a narrow channel
of width δ

� with first order DG in space

∂tuh = ∆huh + fh

� and RKC in time

τρh ≤ 2s2 =⇒ s = O
(

h−1
)

We fix τ = 0.01 and monitor the
performance of RKC as δ → 0.

Ωδ

δ = 1/128

δ = 1/8

Ωδ

δ = 1/128

δ = 1/8

Ωδ

δ = 1/128

δ = 1/8
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Numerical experiment

λ
δ → 0

λ

2−162−102−4
212

225

238

δ

ρ

2−162−102−4
2−1

26

213

δ

Se
co

nd
s Cost RKC

2−162−102−4
213

214

δ

#elements

Conclusion
Stabilization of modes induced by
a very few degrees of freedom
comes at huge computational cost.
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Problem statement

Multirate equation

Solve the dissipative system

y′ = fF(y) + fS(y),

y(0) = y0.

Term Stiff ? Cost ?
fF stiff cheap
fS nonstiff expensive
fF + fS stiff expensive

Examples:
� highly integrated electrical circuits with latent and active

components,
� parabolic problems on locally refined meshes,
� chemical systems with many slow reactions and a few fast

reactions (or species),
� ...

G. Rosilho de Souza Multirate stabilized explicit methods for deterministic and stochastic differential equations 12/43



A parabolic problem on a locally refined mesh

Solve
∂tu−∆u = F.

Space discretization gives:(
∂tuh
∂tuH

)
=

(
∆huh

0

)
︸ ︷︷ ︸

Fast

+

(
Fh

∆HuH + FH

)
︸ ︷︷ ︸

Slow

Im(λ)

Re(λ)

Im(λ)

Re(λ)

fF

fS

Figure. Spectrum of ∆h and ∆H .
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A reaction rate equation with fast and slow reactions

dy
dt

=

M∑
j=1

νjaj(y) =

r∑
j=1

νjaj(y)

︸ ︷︷ ︸
fF(y)

+

M∑
j=r+1

νjaj(y)

︸ ︷︷ ︸
fS(y)

� fF may contain slow reactions
� The fastest reaction in fS may be

almost as fast as the slowest reaction
in fF

� The system could be split in
fast-slow species, instead of
fast-slow reactions.
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Problem statement

Multirate equation

Solve the dissipative system

y′ = fF(y) + fS(y),

y(0) = y0.

Term Stiff ? Cost ?
fF stiff cheap
fS nonstiff expensive
fF + fS stiff expensive

Integration with schemes for y′ = f (y):

explicit methods

stabilized/implicit methods

many function evaluations

very expensive
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Literature review on multirate methods

Most of existing multirate methods:
� are based on a spectrum clustering assumption, that is a clear-cut

partition between fast and slow variables (E, 2003; Gear et al.,
2003; Eriksson et al., 2003),

fF

fS

fF

fS

� perform the coupling of fast and slow variables by interpolation
=⇒ prone to instabilities and/or shortening of the stability
domain (Gear and Wells, 1984; Engstler and Lubich, 1997;
Mirzakhanian, 2017),

� when are stable require the solution to large and complex
nonlinear systems (Ewing et al., 1990; Shishkin and
Vabishchevich, 2000).
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New stabilized explicit multirate method

Multirate RKC (mRKC) method (Abdulle, Grote and Rosilho de
Souza, 2020) based on modified equations:

� no need for scale separation,

fF

fS

fF

fS

� no interpolations,
� fully explicit,
� proven to be stable on a large region close to the negative real

axis.
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Modified multirate equation

Idea

Shrink the spectrum of fF and integrate a modified equation.

Original problem

y′ = f (y) = fF(y) + fS(y).

Spectral properties:

fF

fS

+

=

f

Modified equation

y′η = fη(yη) with η ≥ 0.

For η = 0 it holds fη = f hence:

fF

fS

+

=

fη
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The averaged force fη

Properties of fη

� fη = f +O (η), � ρη ≤ ρS � ρ.

Definition of fη

Let u0 ∈ Rn and u : [0, η]→ Rn such that

u′ = fF(u) + fS(u0), u(0) = u0.

Let
fη(u0) :=

1
η

(u(η)− u0) = fS(u0) +
1
η

∫ η

0
fF(u(s)) ds.

Advantages:
� Evaluation cost of fη is comparable to fF + fS, as fS is frozen.
� Stiffness is reduced thanks to the smoothing effect of fF.
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The smoothing effect

Theorem

Let fF(y) = AF y with AF ∈ Rn×n negative definite. Then

fη(y) = ϕ(η AF) f (y), with ϕ(z) =
ez − 1

z
.

� AF < 0 and ϕ(z) ∈ (0, 1) for z < 0:
ϕ(η AF) has a smoothing effect on
f (y),

� η ≥ 0 is a free parameter: enhances
or tames the smoothing effect as
needed.

0−50−100

0

1
ϕ(z)

G. Rosilho de Souza Multirate stabilized explicit methods for deterministic and stochastic differential equations 20/43



Accuracy of the modified equation

Theorem

Let AF be symmetric and such that commutes with ∂fS/∂y. Then, if f
is contractive also fη is contractive. Furthermore,

‖y(t)− yη(t)‖ ≤ max
λ∈λ(AF)

|1− ϕ(ηλ)|
∫ t

0
eµη(t−s)‖f (y(s))‖ ds,

with µη ≤ 0 and λ(AF) the spectrum of AF.

� The error is bounded independently of the stiffness.
� Since 1− ϕ(ηλ) = O (η) as η → 0, then

‖y(t)− yη(t)‖ = O (η) as η → 0.
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Stiffness of the modified equation

Let the multirate test equation be defined by

y′ = fF(y) + fS(y) = λy + ζy, λ, ζ ≤ 0.

Then
fη(y) = ϕ(ηλ)(λ+ ζ)y.

Goal: choose η such that spectrum of fη is comparable to the one of
fS. Hence, we want |ϕ(ηλ)(λ+ ζ)| ≤ |ζ|.

0 2/|ζ| 0.4 0.6 0.8 1
0

20

40

η

|ϕ(ηλ)(λ+ ζ)|, λ = −1
|ϕ(ηλ)(λ+ ζ)|, λ = −103

|ζ| = 10
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Stiffness of the modified equation

Lemma

It holds |ϕ(ηλ)(λ+ ζ)| ≤ |ζ| for all λ ≤ 0 if, and only if, η ≥ 2/|ζ|.

� The result holds for all λ ≤ 0, i.e. no scale separation is needed.
� The parameter η depends only on ζ.
� For η ≥ 2/|ζ| the stiffness of fη depends only on fS.

Back to the examples:
� For a parabolic equation, λ and ζ represent the eigenvalues of the

Laplacians ∆h and ∆H . Since ∆h has large and small
eigenvalues it is important that the result holds for all λ ≤ 0.

� For a chemical reaction system, λ and ζ represent the speed of
different reactions or species. As λ ≈ ζ is allowed, there’s no
need for a clear gap between reactions speed.
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Modified multirate equation

Modified multirate equation

Solve

y′η = fη(yη), yη(0) = y0

with

fη(u0) =
1
η

(u(η)− u0),

where u is defined by

u′ = fF(u) + fS(u0), u(0) = u0, η = 2/ρS

and ρS is the spectral radius of the Jacobian of fS.

Integrated numerically =⇒ different spectral properties
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Multirate RKC scheme

Definition of the mRKC scheme

Let τ > 0 be the step size, integrate

y′η = fη(yη), yη(0) = y0,

using an s-stage RKC scheme, where τρS ≤ 2s2. The right-hand side
fη is defined by

fη(u0) =
1
η

(uη − u0),

where uη is an approximation of u(η), solution of

u′ = fF(u) + fS(u0), u(0) = u0, η = ?,

obtained by one step of an m-stage RKC scheme, where ηρF ≤ 2m2.
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Stability analysis of numerical fη

We apply the scheme to the multirate test equation

y′ = fF(y) + fS(y) = λy + ζy.

Thus u′ = λu + ζu0, which yields

uη = (Pm(ηλ) + Φm(ηλ)ηζ)u0, u(η)= (eηλ + ϕ(ηλ)ηζ)u0

with

Pm(z) =
stability polynomial

amTm(υ0 + υ1z), Φm(z) =
Pm(z)− 1

z
. ϕ(z)=

ez − 1
z

Theorem

fη(u0) = Φm(ηλ)(λ+ ζ)u0.

fη(u0) = ϕ(ηλ)(λ+ ζ)u0

−100 −50 0

0

1
ϕ(z)
Φ8(z)
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Stability analysis of numerical fη

The modified equation

y′η = fη(yη) = Φm(ηλ)(λ+ ζ)yη

is integrated with an s-stage RKC scheme, with τρS ≤ 2s2.

Goal: choose η such that τΦm(ηλ)(λ+ ζ) fits into the stability
domain of the s-stage RKC scheme, i.e. τ |Φm(ηλ)(λ+ ζ)| ≤ 2s2.

0 0.2 0.4 ηmin 0.8 1
0

20

40

η

τ |Φs(ηλ)(λ+ ζ)|, λ = −1
τ |Φs(ηλ)(λ+ ζ)|, λ = −103

2s2
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Stability analysis of numerical fη

Remember: s is the number of stages needed to stabilize the slow
terms fS.

Lemma

It holds τ |Φm(ηλ)(λ+ ζ)| ≤ 2s2 for ηλ ∈ [−2m2, 0] if, and only if,
η ≥ 3τ/s2.

� In practice, η = 3τ/s2,
� η = O (τ).
� Usually s > 1, thus η � τ and the averaging error is negligible.
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Multirate RKC scheme

Definition of the mRKC scheme

Let τ > 0 be the step size, integrate

y′η = fη(yη), yη(0) = y0,

using an s-stage RKC scheme, where τρS ≤ 2s2. The right-hand side
fη is defined by

fη(u0) =
1
η

(uη − u0),

where uη is an approximation of u(η), solution of

u′ = fF(u) + fS(u0), u(0) = u0, η = 3τ/s2,

obtained by one step of an m-stage RKC scheme, where ηρF ≤ 2m2.

Theorem

The scheme is stable and is first-order accurate.
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Numerical experiment: diffusion through a narrow channel

Solve
∂tu−∆u = F in Ωδ × [0,T],

∇u · n = 0 in ∂Ωδ × [0,T],

u = 0 in Ωδ × {0},
using first-order DG in space:(

∂tuh
∂tuH

)
=

(
∆huh

0

)
︸ ︷︷ ︸

Fast

+

(
Fh

∆HuH + FH

)
.︸ ︷︷ ︸

Slow

� As δ → 0 the elements in the channel
get smaller.

� For varying channel width δ, compare
the efficiencies of mRKC and RKC.

Ωδ

δ = 1/128

δ = 1/8

Ωδ

δ = 1/128

δ = 1/8

Ωδ

δ = 1/128

δ = 1/8
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Numerical experiment: diffusion through a narrow channel

fF

fS
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Outline

1. Stabilized explicit schemes for stiff differential equations

2. Multirate stabilized explicit schemes for deterministic differential
equations

3. Multirate stabilized explicit schemes for stochastic differential
equations



Problem statement

Stochastic multirate equation

Solve the SDE

dX = fF(X) dt + fS(X) dt + g(X) dW, X(0) = X0,

with g : Rn → Rn×r the diffusion term and W(t) an r-dimensional
Wiener process.

� Very scarce literature: only multiscale-like methods exist
(Vanden-Eijnden, 2003; Abdulle et al., 2017), i.e. assuming scale
separation.

Our strategy (Abdulle and Rosilho de Souza, 2020):
� Replace fF + fS by fη to decrease stiffness. X
� Replace g by a damped diffusion gη. Why? How?
� Integrate the resulting modified equation and the auxiliary

problems with stabilized explicit methods. Which ones?
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Why must g be replaced by some gη?

Consider the stochastic
multirate test equation

dX = (λ+ ζ)X dt + µX dW,

with λ, ζ ≤ 0, µ ∈ R.
The equation is mean-square
stable if, and only if,

λ+ ζ +
1
2
µ2 < 0.

S

λ+ ζ

µ2

Replace λ+ ζ by the averaged force
ϕ(ηλ)(λ+ ζ), yielding

dXη = ϕ(ηλ)(λ+ ζ)Xη dt + µXη dW

and keep µ as is.
The equation is mean-square stable if,
and only if,

ϕ(ηλ)(λ+ ζ) +
1
2
µ2 < 0.

Unstable

ϕ(ηλ)(λ + ζ)

µ2
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The damped diffusion gη

Properties of gη

� gη = g+O (η). � Modified equation inherits the mean-square
stability of the original problem.

Definition of gη

Let v0 ∈ Rn and v, v : [0, η]→ Rn such that

v′ =
1
2

fF(v) + g(v0), v′ =
1
2

fF(v), v(0) = v(0) = v0.

Let

gη(v0) :=
1
η

(v(η)− v(η)) = g(v0) +
1

2η

∫ η

0
(fF(v(s))− fF(v(s))) ds.

For linear fF(y) = AF y then gη(y) = ϕ
(

1
2η AF

)
g(y).
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Stochastic modified equation and mean-square stability

Stochastic modified equation

dXη = fη(Xη) dt + gη(Xη) dW, Xη(0) = X0.

For the stochastic multirate test equation it holds

dXη = ϕ(ηλ)(λ+ ζ)Xη dt + ϕ

(
1
2
ηλ

)
µXη dW,

which is mean-square stable.

ϕ(ηλ)(λ+ ζ)

ϕ(ηλ/2)2µ2
Stable

−40 −20 0

0

0.5

1

ηλ

ϕ(ηλ) ≥ ϕ(ηλ/2)2

ϕ(ηλ)

ϕ(ηλ/2)2
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Integrating the stochastic modified equation

Stochastic modified equation

dXη = fη(Xη) dt + gη(Xη) dW, Xη(0) = X0.

applied to the stochastic multirate test equation

dX = (λ+ ζ)X dt + µX dW.

yields

dXη = ϕ(ηλ)(λ+ ζ)Xη dt + ϕ

(
1
2
ηλ

)
µXη dW,

which is stable due to ϕ(z) ≥ ϕ(z/2)2.

And numerically?
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Integrating the stochastic modified equation

Stochastic modified equation

dXη = fη(Xη) dt + gη(Xη) dW, Xη(0) = X0.

applied to the stochastic multirate test equation

dX = (λ+ ζ)X dt + µX dW.

yields

dXη = Φm(ηλ)(λ+ ζ)Xη dt + Ψr

(
1
2
ηλ

)
µXη dW,

for some polynomial Ψr(z). It would be stable if

Φm(z) ≥ Ψr(z/2)2.
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Approximation of gη

Solution: approximate gη with an m/2-stage modified RKC scheme.

Φm(z)︸ ︷︷ ︸
associated to RKC

≥ Ψm/2(z/2)2︸ ︷︷ ︸
modified RKC

.

−60 −40 −20 0

0

0.5

1

z

Φ6(z)
Ψ3(z/2)2

Warning: employing a standard RKC scheme for the approximation
of gη would not yield in a stable equation.
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Multirate SK-ROCK scheme

Definition of the mSK-ROCK scheme

Let τ > 0 be the time step, integrate

dXη = fη(Xη) dt + gη(Xη) dW, Xη(0) = X0

using an s-stage SK-ROCK scheme (Abdulle et al., 2018), where
τρS ≤ 2s2,

fη(u0) = 1
η (uη − u0), gη(v0) = 1

η (vη − vη)

and uη, vη, vη are approximations to u(η), v(η), v(η) computed by
RKC schemes. With η as for the mRKC scheme,

� uη is computed with an m-stage RKC scheme, ηρF ≤ 2m2.
� vη, vη are computed with an r-stage RKC scheme, with r = m/2.

Theorem

The scheme is stable, has strong order 1/2 and weak order 1.
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Numerical experiment: diffusion through a narrow channel

Solve the heat equation with multiplicative
colored noise

du−∆u dt = F dt + G(u) dW in Ωδ × [0,T],

∇u · n = 0 in ∂Ωδ × [0,T],

u = 0 in Ωδ × {0},
using first-order DG in space.

We let δ → 0 and compare the efficiency of
mSK-ROCK against SK-ROCK.

Ωδ

δ = 1/128

δ = 1/8

Ωδ

δ = 1/128

δ = 1/8

Ωδ

δ = 1/128

δ = 1/8
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Numerical experiment
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E. Coli bacteria heat shock response

Consider a chemical Langevin equation modeling E. Coli bacteria’s
protein denaturation under heat shocks. The model consists in 28
species and 61 reactions.

dX =

m∑
j=1

νjaj(X)

︸ ︷︷ ︸
fF(X)

dt +

61∑
j=m+1

νjaj(X)

︸ ︷︷ ︸
fS(X)

dt +

61∑
j=1

νj

√
aj(X)

︸ ︷︷ ︸
g(X)

dWj(t)

� fF contains the m fastest reactions.
� We compare the efficiency of the scheme for different values of

m = 0, 1, . . . , 10.
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E. Coli bacteria heat shock response
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