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Motivating stabilized explicit methods

Stiff ordinary differential equation

/! ; (Cf m
Yy =f(), t>0, NOF /) 4l1 (A)

¥(0) =yo. Re()\)
Explicit Euler Implicit Euler
Yt1 = Yn + 7f (¥n) Yat1 = Yn + Tf (Ynt1)
m Straightforward to m Needs non linear solver
implement, routine, preconditioners,
m cheap to evaluate. m expensive.
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Motivating stabilized explicit methods

Dahlquist test equation

C_
y =Xy, t>0, g \ Tlm()\)
¥(0) =yo. Re()) |
Explicit Euler Implicit Euler
Yn+1 :(1 + T)‘)yn Yn+1 :(l - T)‘)_lyn
=R(T\)y, =R(TA)yn
" Rz)=1+z mR(z)=(1-2z)!
m [R(z)| < Lforz e [-2,0], m |R(z)| < 1forall Re(z) <0,
m stability condition 7 < ﬁ » unconditionally stable.
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Motivating stabilized explicit methods

Space discretized parabolic equation

Y =Apy, >0, T Im(\)
¥(0) =yo, Re((TAE[_C/W’O]%

where 4 is the smallest element size.

Explicit Euler Implicit Euler

Yn+1 = (1+ TAh)ym Ynt+1 = (I - TAh)_lyn’

with hence

2
T<—=0 <h2> . large system to solve.
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Motivating stabilized explicit methods

Space discretized parabolic equation

Y =Apy, >0, T Im(\)
¥(0) =y, Re((TAE[_C/W’O]%

where 4 is the smallest element size.

Explicit Euler Implicit Euler

Yn+1 = (1+ TAh)ym Ynt+1 = (I - TAh)_lyn’

with hence

T < <h2> . large solve.
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Construction of stabilized explicit Runge—Kutta methods

Given a fixed number of stages s, find a first order explicit scheme
with maximal stability domain along the negative real axis.
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Construction of stabilized explicit Runge—Kutta methods

Goal

Given a fixed number of stages s, find a first order explicit scheme
with maximal stability domain along the negative real axis.

The stability polynomial of such a scheme solves the following

Optimization problem (Markoff, 1916; Guillou and Lago, 1960)

Find a polynomial Ry(x) of degree s satisfying

and
|Rs(z)| < 1 for z € [—¥, 0] with £; maximal.
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Construction of stabilized explicit Runge—Kutta methods

The solution to the optimization problem is

(e E) e [RO=RO=1.
R(z) =T (1 + s2) ) th {]RS(Z)| <1 Vz e [-2s%,0],

where T(x) is the Chebyshev polynomial of the first kind of degree s.

1 2
— Rs(2)
0| —+— R10(2)
S !
—200 —150 —100 —-50 0
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Consequences

m For each s, there is a first-order accurate polynomial Ry(z)
satisfying |Ry(z)| < 1 for all z € [~2s2, 0.

m The stability condition on a Runge—Kutta scheme having R,(z)
as stability polynomial is

Tp <257, p=p (%) :

m Instead of adapting the step size 7 we can simply take s larger.
m There is no step size restriction.

m The size of the stability domain of this family of Runge—Kutta
schemes grows quadratically with the number of stages.
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Runge—Kutta—Chebyshev method

From the recursive property
To(x) =1, Ti(x)=x, Tu(x)=2xT,—1(x)— Tp_a(x).

we can derive a Runge—Kutta scheme having R,(z) as stability
polynomial (Van der Houwen and Sommeijer, 1980).

Runge—Kutta—Chebyshev (RKC) method

Set s € N such that 7p < 2s2. Iterate
ko =yn,
ki =ko + pu7f (ko),
ki =vjki—1 — Kjki—o + pi7f(ki—1) forj=2,...,s,

Yn+1 =k.

Fory = Ay and z = 7\ it holds: y,| = Ty (l + s%) Yn = Ry(2)yn-
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Cost of the RKC method

‘We estimate the cost, in the number of function evaluations, when
integrating from ¢t =0to ¢t = 1.
» For RKC: take 7 = 1, since 7p < 2s% then s = \/p/2:

CRKC:S: g

m For explicit Euler: take 7 = 2/p and 1/7 time steps:

» For p = C/h*:

/C1 C1
Crxkc =\ =~ Ceg == —-.
RKC 7 EE =573

m Comparison with implicit Euler depends on a multitude of
factors: system size, non linearity, preconditioners, parallelism,...
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Stability domain

S={zeC_ : |R(2)| <1}

S for explicit Euler. S fors = 10,5 = 5.
C_ 10 C_ 10
B ~
0 F 0 %
& 8
-10 -10
200 -150 <100 -50 0 200 -150  -100  -50 0

Re(z) Re(z)

m Problem: unstable in
imaginary direction.




Stability domain

S={zeC_ : |Ri(2)| <1}
S for explicit Euler.

S fors =10,s = 5.
E i: C_ 10 C_ ;10
0 E 0 \g
-10 -10
2200 -150  -100  -50 0 200 -150  -100  -50 0
Re(z) Re(z)
= Problem: unstable in S for s = 10, s = 5. Damped.
imaginary direction.
m Replace T (1 + s%) by C_ o _
1
Ts(wo + wiz
Rs(z) = (o 12) 200 -150  -100
TS(WO)
G. Rosilho de Souza
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Numerical experiment

Solve Ou—Au=f in Q5 x [0, T},
Vu-n=0 in 095 x [0, T,
u=20 in Q5 x {0},

in a domain {25 containing a narrow channel
of width §

m with first order DG in space
Oy, = Apup + fi
m and RKC in time
Top <28 = s=0 <h_1>

We fix 7 = 0.01 and monitor the
performance of RKC as § — 0.
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Numerical experiment

38 = 13 =
L — 1 L, 2 [——CostRKC' T
=
=
225 - - § 26 - -
9]
212 [ 1 | I 2—1 L | | I
274 2710 2716 274 2710 2716
6 6
214 \ T
—=— #elements
213 L | | s
274 27]0 2716
6

ial equations




Numerical experiment

0—=0 »
38 = 13 —
L — i . 2 [=—CostRKC' T
el
225 - - S 26 - -
Q
2
212 L | | H 2—1 L 1 | H
274 2710 2716 274 2710 2716
) ]
214 \ T T )
—w— #elements Conclusion
Stabilization of modes induced by
a very few degrees of freedom
2B L 2‘74 27‘]0 2f‘6 comes at huge computational cost.
]
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2. Multirate stabilized explicit schemes for deterministic differential
equations



Problem statement

Multirate equation

Solve the dissipative system Term ‘ Stiff ? ‘ Cost ?
Y =fr () +£0), Jr S
(0) = fs nonstiff | expensive
g Yo fr+fs | stff expensive
Examples:
m highly integrated electrical circuits with latent and active
components,

m parabolic problems on locally refined meshes,

m chemical systems with many slow reactions and a few fast
reactions (or species),
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A parabolic problem on a locally refined mesh

Solve
8tu —Au=F.

Space discretization gives:

Oup \ [ Apuy n Fy,
Oy o 0 Aguyg + Fy
—_—— — ——

Fast Slow

Re(\) Tk |

Re(\)

Figure. Spectrum of A, and Apy.
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A reaction rate equation with fast and slow reactions

M r M

dy

i D vigy) =D vig)+ D vig(y)
j=1 j=1 Jj=r+l1

~~

fr(y) fs(v)
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A reaction rate equation with fast and slow reactions

M r M

dy

i D vigy) =D vig)+ D vig(y)
j=1 j=1 Jj=r+l1

~~

fr(y) fs(v)

® fr may contain slow reactions
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A reaction rate equation with fast and slow reactions

M r M

dy

i D vigy) =D vig)+ D vig(y)
j=1 j=1 Jj=r+l1

~~

fr(y) fs(v)

® fr may contain slow reactions

m The fastest reaction in fs may be 0
almost as fast as the slowest reaction ; Jr T
in ja

/ %]
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A reaction rate equation with fast and slow reactions

M r M

dy

i D vigy) =D vig)+ D vig(y)
j=1 j=1 Jj=r+l1

~~

fr(y) fs(v)

® fr may contain slow reactions

m The fastest reaction in fs may be 0
almost as fast as the slowest reaction ~ fr= |
in ja

§ y 3]

m The system could be split in

fast-slow species, instead of
fast-slow reactions.

G. Rosilho de Souza Multirate stabilized explicit methods for deterministic and stochastic differential equations



Problem statement

Multirate equation

Solve the dissipative system Term | Stff? | Cost?
Y =fr(y) +5(); Ir stff | cheap
(0) = Is nonstiff | expensive
S fr+fs | stff expensive

Integration with schemes for y’ = f(y):
liei hod

stabilized/implicit methods very expensive

K—» many function evaluations —J
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Literature review on multirate methods

Most of existing multirate methods:

m are based on a spectrum clustering assumption, that is a clear-cut
partition between fast and slow variables (E, 2003; Gear et al.,
2003; Eriksson et al., 2003),

—fr
fs{ fs{

m perform the coupling of fast and slow variables by interpolation
= prone to instabilities and/or shortening of the stability
domain (Gear and Wells, 1984; Engstler and Lubich, 1997;
Mirzakhanian, 2017),

m when are stable require the solution to large and complex
nonlinear systems (Ewing et al., 1990; Shishkin and
Vabishchevich, 2000).
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New stabilized explicit multirate method

Multirate RKC (mRKC) method (Abdulle, Grote and Rosilho de
Souza, 2020) based on modified equations:

m no need for scale separation,

® no interpolations,
m fully explicit,

m proven to be stable on a large region close to the negative real
axis.
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Modified multirate equation

Shrink the spectrum of fr and integrate a modified equation.

Original problem Modified equation

Y =) =1r(y) +10). Yy =fn(vy)  withn > 0.
Spectral properties: For 7 = 0 it holds f,, = f hence:
M 1 + fr +
fs1 = fs1 =
f fn
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Modified multirate equation

Shrink the spectrum of fr and integrate a modified equation.

Original problem Modified equation

Y =) =1r(y) +10). Yy =fn(vy)  withn > 0.
Spectral properties: For thenf, =f + O (),
a 1 + —f— +
fs1 = fs1 =
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Modified multirate equation

Shrink the spectrum of fr and integrate a modified equation.

Original problem Modified equation

Y =) =1r(y) +10). Yy =fn(vy)  withn > 0.
Spectral properties: For 7 > Othenf,, = f 4+ O (n),
Jr 1 + iq +
(= 1 =
f )
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The averaged force f;

Properties of f,,

= fp=f+00), B p, < ps L p.
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The averaged force f;
Properties of f,,

= fp=f+00), B p, < ps L p.

Definition of f,,

Let ugp € R" and u : [0, 1] — R” such that

u' = fr(u) + fs(up), u(0) = up.

Let 1
fo(uo) = 5(’4(77) — ug) = fs(uo) / fr(u(s)) ds.

Multirate stabilized explicit methods for deterministic and stochastic differential equations 19/43
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The averaged force f;

Properties of f,,

= fp=f+00), B p, < ps L p.

Definition of f,,

Let ugp € R" and u : [0, 1] — R” such that

Ltl :fp(u) +fg(blo), M(O) = Uyp.

Let
fo(uo) = %('4(77) — up) = fs(uo) / fr(u

Advantages:
m Evaluation cost of f;, is comparable to fr + fs, as fs is frozen.

m Stiffness is reduced thanks to the smoothing effect of fr.
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The smoothing effect

Theorem
Let fr(y) = Ary with Ap € R"*" negative definite. Then

e —1

In(¥) = e(nAr)f(y), with o(z) = —

m Ar < 0and p(z) € (0,1) forz < 0:
©(nAr) has a smoothing effect on —p(z)
fO).

m 7 > 0is a free parameter: enhances
or tames the smoothing effect as 0 -
needed.
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Accuracy of the modified equation

Theorem

Let A be symmetric and such that commutes with Ofs/0y. Then, if f
is contractive also f, is contractive. Furthermore,

I(#) = ym(@)ll < max |1 - (nA)I/O 1 (y()) ] ds,

AEA(AF

with i, < 0 and \(Af) the spectrum of Ap.

m The error is bounded independently of the stiffness.
s Since 1 — p(nA) = O (n) asn — 0, then

() =y (D) = O (n) as n—0.
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Stiffness of the modified equation

Let the multirate test equation be defined by

Y =) +s0) =+, N0

Then
Ja) = e A+ Q)y.

choose 7 such that spectrum of f;, is comparable to the one of
fs. Hence, we want |@(n\)(A + ¢)] < |C].
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Stiffness of the modified equation

Let the multirate test equation be defined by

Y =) +s0) =+, N0

Then
Ja) = e A+ Q)y.

choose 7 such that spectrum of f;, is comparable to the one of
fs. Hence, we want |@(n\)(A + ¢)] < |C].

40 Tl A+ A=
——[p(nA)(A+ L A =—103
20 | {--- =10

0 ‘
0 2/|c] 04 06 08 1
n
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Stiffness of the modified equation

Lemma

It holds |(n\)(\ + ¢)| < [¢| for all X < 0 if, and only if, n > 2/|(].

m The result holds for all A < 0, i.e. no scale separation is needed.
m The parameter ) depends only on (.
m For n > 2/|¢| the stiffness of f,, depends only on fs.
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Stiffness of the modified equation

Lemma

It holds |(n\)(X + ¢)| < [¢| for all X < 0 if, and only if. n > 2/|(].

m The result holds for all A < 0, i.e. no scale separation is needed.
m The parameter ) depends only on (.
m For n > 2/|¢| the stiffness of f,, depends only on fs.

Back to the examples:

m For a parabolic equation, A and ( represent the eigenvalues of the
Laplacians A, and Ag. Since Ay, has large and small
eigenvalues it is important that the result holds for all A < 0.

m For a chemical reaction system, A and ( represent the speed of
different reactions or species. As A =~ ( is allowed, there’s no
need for a clear gap between reactions speed.
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Modified multirate equation

Modified multirate equation

Solve
)’;7 an()’n)a yn(O) =Yo
with
1
fo(uo) = E(M(n) — u),
where u is defined by
u' = fr(u) + fs(uo), u(0) = uo, n=2/ps

and pg is the spectral radius of the Jacobian of fs.
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Modified multirate equation

Modified multirate equation

Solve
Yn = Fam)s yn(0) = o
with Integrated numerically = different spectral properties
Folu) = ~(ulo) = ),

where i is defined by

‘:u/ = fr(u) +fs(u0),] u(0) = u, @93

and pg is the spectral radius of the Jacobian of fs.
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Multirate RKC scheme

Definition of the mRKC scheme

Let 7 > 0 be the step size, integrate

y;7 = faln)» ¥ (0) = Yo,

using an s-stage RKC scheme, where 75 < 2s2. The right-hand side
fr 1s defined by

Jn(uo) = %(“n — up),

where u,, is an approximation of (1), solution of

u' = fr(u) + fs(uo), u(0) = uo, n= e,

obtained by one step of an m-stage RKC scheme, where npr < 2m?.
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Stability analysis of numericalﬁ

We apply the scheme to the multirate test equation

Y =fr(y) +fs(y) = Ay + Q.
Thus u' = Au + Cup, which yields

ty = (Pu(nX) + @u(mNnQuo, — uln)= (" + o(n)\)nC)uo

with
stability polynomial Pm 7)) —1 et — 1
Pul@) = anTalin + 012, afe) = 2L 0
1
— ()
—— Dg(z)
Jo(0) = @u(nA) (A + QJuo. ;
Jo(uo) = p(MA)(A+ Cuo 0 i
—100 -50 0
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Stability analysis of numericalﬁ

The modified equation

Y = Fa ) = SN (A + )y
is integrated with an s-stage RKC scheme, with 7p5 < 2s2.

choose 7 such that 7®,,(n\) (A + ) fits into the stability
domain of the s-stage RKC scheme, i.e. 7|®,,(n\)(\ + )| < 2s%.
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Stability analysis of numericalﬁ

The modified equation

Y = Fa ) = SN (A + )y
is integrated with an s-stage RKC scheme, with 7p5 < 2s2.

choose 7 such that 7®,,(n\) (A + ) fits into the stability
domain of the s-stage RKC scheme, i.e. 7|®,,(n\)(\ + )| < 2s%.

40 | TP A+ Q) A
== 7| (NN A+, A= —103
20 |- 29

_DM&A_‘

0
0 02 04 "min 0.8 1
n
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Stability analysis of numericalﬁ

Remember: s is the number of stages needed to stabilize the slow
terms fs.
Lemma

It holds 7|®,,(n\)(\ + )| < 2% for n\ € [—2m?,0] if, and only if,
n > 37/s%

= In practice, n = 37/s?,

mn=0(7).
m Usually s > 1, thus n < 7 and the averaging error is negligible.
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Multirate RKC scheme

Definition of the mRKC scheme

Let 7 > 0 be the step size, integrate

y;7 = faln)» ¥ (0) = Yo,

using an s-stage RKC scheme, where 75 < 2s52. The right-hand side
fr 1s defined by . 1
Jn(uo) = 5(”77 — u),

where u,, is an approximation of (1), solution of
u' = fr(u) + fs(uo), u(0) = up, n=371/s%

obtained by one step of an m-stage RKC scheme, where npr < 2m?.

Theorem

The scheme is stable and is first-order accurate.
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Numerical experiment: diffusion through a narrow channel

Solve
Ou—Au=F in Q5 x [0, 7],
Vu-n=0 in 9Q5 x [0, 7],
u=20 in Q5 x {0},

using first-order DG in space:

&uh . Ahuh + Fh
Oug) \ 0O Apgug +Fy |-
—_———

Fast Slow

m As 6 — 0 the elements in the channel
get smaller.

m For varying channel width §, compare
the efficiencies of mRKC and RKC.
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Numerical experiment: diffusion through a narrow channel

= 34 — :
"c'é 2 —‘*—fs 7 é 29 [ mRKC‘ B
= ©
g )23 [T fF i E " | ——RKC |
5]
UQ)-' o1z L ! il E 71 !
20 -7 -4 @] 20 27 o—14
1) 1)
g 10-4 7—‘1\— Relative error | = 60r_ Speed—ﬁp ]
= g O 1
c 8 20 .
= 1074 L ! o 2 1L Bl
20 277 2—14 20 277 2—14
) )
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3. Multirate stabilized explicit schemes for stochastic differential
equations



Problem statement

Stochastic multirate equation

Solve the SDE

dX = fp(X) dt + fs(X) dt + g(X) dW, X(0) = Xo,

with g : R" — R"*" the diffusion term and W(7) an r-dimensional
Wiener process.

m Very scarce literature: only multiscale-like methods exist
(Vanden-Eijnden, 2003; Abdulle et al., 2017), i.e. assuming scale
separation.
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Problem statement

Stochastic multirate equation

Solve the SDE

dX = fp(X) dt + fs(X) dt + g(X) dW, X(0) = Xo,

with g : R" — R"*" the diffusion term and W(7) an r-dimensional
Wiener process.

m Very scarce literature: only multiscale-like methods exist
(Vanden-Eijnden, 2003; Abdulle et al., 2017), i.e. assuming scale
separation.

Our strategy (Abdulle and Rosilho de Souza, 2020):
m Replace fr + fs by f; to decrease stiffness. v/
Replace g by a damped diffusion g,,. Why? How?
Integrate the resulting modified equation and the auxiliary
problems with stabilized explicit methods. Which ones?
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Why must g be replaced by some g, ?

Consider the stochastic Replace X\ 4 ¢ by the averaged force
multirate test equation ©(nA)(A + (), yielding

dX = A+ )X dr + pXdw, dX, = e(nA)(A + ()X, dt + pX,, dW

with A, <0, u € R. and keep p as is.
The equation is mean-square The equation is mean-square stable if,
stable if, and only if, and only if,
1, 1,
/\+C+§u <0. @(UA)(A—I—C)-FE,U <0.

Multirate stabilized explicit methods for deterministic and stochastic differential equations
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Why must g be replaced by some g, ?

Consider the stochastic Replace )\ + ¢ by the averaged force
multirate test equation ©(nA)(A + (), yielding
dX = A+ )X dr+ pXdw, dX, = e(nA)(A + ()X, dt + pX,, dW
with A, <0, u € R. and keep p as is.
The equation is mean-square The equation is mean-square stable if,
stable if, and only if, and only if,
1 1,
)\+C+§,u <0. (,0(77)\)(>\+C)+5,U <0.
Unstable
B - - - - ® -
: S /Lz 1 | ,U:z 7
- L
A+ C | e+ 0|
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The damped diffusion g,

Properties of g,

m g, =g+0O(n). = Modified equation inherits the mean-square
stability of the original problem.
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The damped diffusion g,

Properties of g,

m g, =g+0O(n). = Modified equation inherits the mean-square
stability of the original problem.

Definition of g,

Letvg € R" and v,V : [0, 7] — R”" such that

V= %fF(V) +gw), V= %fF(V)a v(0) = ¥(0) = vo.
Let

gn(v0) i= %(V(n) ()= g(v0) + 2‘/ / " (e (v(s)) — fr (¥(s)) ds.

For linear fr(y) = Ary then g,(y) = ¢ (%nAF) g(y).
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Stochastic modified equation and mean-square stability

Stochastic modified equation

dX, = f,(X,) dr + g,(X,) dW, X,(0) = Xo.
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Stochastic modified equation and mean-square stability

Stochastic modified equation

dX, = f,(X,) dr + g,(X,) dW, X,(0) = Xo.

For the stochastic multirate test equation it holds

1
dXy = e(nA) (A + )Xy di + ¢ (517)\) (X, AW,

which is mean-square stable.

@(nA) > @(nA/2)?

M — e | 1
. A2 | e (A )2)2 0.5

—40 -20 0
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Integrating the stochastic modified equation

Stochastic modified equation

dX,) = f,(X,) dt + gn(X,;) AW, X, (0) = Xo.

applied to the stochastic multirate test equation
dX = A+ )X dr + puX dw.
yields
1
By = oM+ O+ (0 o aw,
which is stable due to 0(z) > o(z/2)%

And numerically?
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Integrating the stochastic modified equation

Stochastic modified equation

dX, = f,(X;) dt + g;,(Xy) dW, X,(0) = Xo.

applied to the stochastic multirate test equation
dX =N+ )X dt + puXdw.
yields

1
dX,) = O, () (A + O)X, dt + T, <2m> X, dW,

for some polynomial W,(z). It would be stable if

D,(z) > U, (z/2)%
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Approximation of g,

approximate g, with an m/2-stage modified RKC scheme.

O,(z) > ,(z/2)°.
N——
associated to RKC modified RKC

1
—— (‘1)6(1)
——U3(z/2)?
05} B
0 i
! ! !
—60 —40 —-20 0
Z

Warning: employing a standard RKC scheme for the approximation
of g, would not yield in a stable equation.
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Multirate SK-ROCK scheme

Definition of the mSK-ROCK scheme

Let 7 > 0 be the time step, integrate

dX,) = fo (Xyy) dt + g5 (Xp) AW, Xy(0) = Xo

using an s-stage SK-ROCK scheme (Abdulle et al., 2018), where
Tps < 287,

Foluo) = 5 (uy —uo),  En(vo) = 5 (vyy = 77)

and u,, vy, v, are approximations to u(7), v(n), v(n) computed by
RKC schemes. With n as for the mRKC scheme,

® u, is computed with an m-stage RKC scheme, npr < 2m?.

® v,, v, are computed with an r-stage RKC scheme, with r = m/2.

Theorem

The scheme is stable, has strong order 1/2 and weak order 1.
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Numerical experiment: diffusion through a narrow channel

Solve the heat equation with multiplicative
colored noise

du — Audr = Fdt + G(u)dW in Qs x [0, 77,
Vu-n=0 in 0Qs x [0, T,
u=20 in Q5 x {0},
using first-order DG in space.

We let § — 0 and compare the efficiency of
mSK-ROCK against SK-ROCK.

N

-= 5=1/128
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Numerical experiment
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E. Coli bacteria heat shock response

Consider a chemical Langevin equation modeling E. Coli bacteria’s
protein denaturation under heat shocks. The model consists in 28
species and 61 reactions.

dX = Zu]a] ) dt + Z vjaj(X dt—i—ZVJ aj(X) dW;(t
%’_/ Jj= m—HV .

fr(X) fs(X) g(X)

m fr contains the m fastest reactions.

m We compare the efficiency of the scheme for different values of
m=0,1,...,10.
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E. Coli bacteria heat shock response
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Thank you for your attention!
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