Multirate explicit stabilized integrators for stiff differential equations

Assyr ABDULLE, Marcus J. GROTE, <u>Giacomo ROSILHO DE SOUZA</u>

École Polytechnique Fédérale de Lausanne (EPFL), SB-MATH-ANMC, Station 8, 1015 Lausanne, Switzerland

Basel, 1st November 2019.

Explicit stabilized integrators for stiff differential equations

Stiff ordinary differential equation

$$y' = f(y), \quad t > 0,$$

 $y(0) = y_0.$

$$Re(\lambda) \xrightarrow{\mathbb{C}_{-}} Im(\lambda)$$

Explicit Euler

 $y_{n+1} = y_n + \tau f(y_n)$

- Straightforward to implement,
- cheap to evaluate.

Implicit Euler

$$y_{n+1} = y_n + \tau f(y_{n+1})$$

- Needs non linear solver routine, preconditioners,
- expensive.

Motivating explicit stabilized methods

Dahlquist test equation

$$y' = \lambda y, \quad t > 0,$$

$$y(0) = y_0.$$

$$Re(\lambda) \xrightarrow{\mathbb{C}_{-}} Im(\lambda)$$

Explicit Euler

$$y_{n+1} = (1 + \tau \lambda) y_n$$
$$= R(\tau \lambda) y_n$$

•
$$R(z) = 1 + z$$
,

•
$$|R(z)| \le 1$$
 for $z \in [-2, 0]$,

• stability condition
$$\tau \leq \frac{2}{|\lambda|}$$

Implicit Euler

$$y_{n+1} = (1 - \tau \lambda)^{-1} y_n$$
$$= R(\tau \lambda) y_n$$

•
$$R(z) = (1-z)^{-1}$$

- $|R(z)| \le 1$ for all $Re(z) \le 0$,
- unconditionally stable.

Motivating explicit stabilized methods

Space discretized parabolic equation

$$y' = \Delta_h y, \quad t > 0,$$

 $y(0) = y_0,$

$$Re(\lambda) \xrightarrow{\mathbb{C}_{-}} Im(\lambda)$$

where h is the smallest element size.

Explicit Euler

$$y_{n+1} = (I + \tau \Delta_h) y_n,$$

with

$$au \leq rac{2}{|\lambda|} = \mathcal{O}\left(h^2
ight).$$

Implicit Euler

$$y_{n+1} = (I - \tau \Delta_h)^{-1} y_n,$$

hence

large system to solve.

Motivating explicit stabilized methods

Space discretized parabolic equation

$$y' = \Delta_h y, \quad t > 0,$$

 $y(0) = y_0,$

$$Re(\lambda) \xrightarrow{\mathbb{C}_{-}} Im(\lambda)$$

where h is the smallest element size.

Explicit Euler

$$y_{n+1} = (I + \tau \Delta_h) y_n,$$

with

$$au \leq \mathcal{O}(h^2).$$

Implicit Euler

$$y_{n+1} = (I - \tau \Delta_h)^{-1} y_n,$$

hence

Construction of explicit stabilized Runge-Kutta methods

Goal

Given a fixed number of stages *s*, find a first order explicit scheme with maximal stability domain along the negative real axis.

Goal

Given a fixed number of stages *s*, find a first order explicit scheme with maximal stability domain along the negative real axis.

The stability polynomial of such a scheme solves the following

Optimization problem (Markoff, 1916; Guillou and Lago, 1960)

Find a polynomial $R_s(x)$ of degree *s* satisfying

 $R_s(0)=R_s'(0)=1$

and

 $|R_s(z)| \leq 1$ for $z \in [-\ell_s, 0]$ with ℓ_s maximal.

Solution to the optimization problem

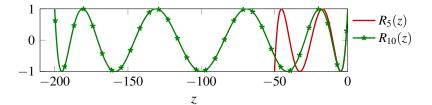
Chebyshev polynomials of the first kind are defined recursively by

 $T_0(x) = 1,$ $T_1(x) = x,$ $T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$ and satisfy

$$T_n(1) = 1,$$
 $T'_n(1) = n^2,$ $|T_s(x)| \le 1$ for all $x \in [-1, 1].$

Thus,

$$R_s(z) = T_s \left(1 + \frac{z}{s^2}\right) \quad \text{satisfies} \quad \begin{cases} R_s(0) = R'_s(0) = 1, \\ |R_s(z)| \le 1 \quad \forall z \in [-2s^2, 0]. \end{cases}$$



Consequences

- For each *s*, there is a first order accurate polynomial $R_s(z)$ satisfying $|R_s(z)| \le 1$ for all $z \in [-2s^2, 0]$.
- If there exists a Runge–Kutta scheme having R_s(z) as stability polynomial, the stability condition on that scheme would be

$$\tau \lambda \in [-2s^2, 0] \qquad \forall \lambda = \lambda \left(\frac{\partial f}{\partial y}\right) \qquad \Longleftrightarrow \\ \tau \rho \leq 2s^2 \qquad \rho = \rho \left(\frac{\partial f}{\partial y}\right).$$

- If such a scheme exists for all s, instead of adapting the step size
 τ we can change scheme and take s larger.
- There is no step size restriction.
- The size of the stability domain of this *family* of Runge–Kutta schemes grows *quadratically* with the number of stages.

Does such a method exists?

First solution was given by Guillou and Lago (1960), the idea is to write

$$R_s(z) = \prod_{j=1}^s \left(1 - \frac{1}{z_i}z\right),$$
 with z_i roots of $R_s(z).$

And represent the scheme as composition of Euler steps:

$$k_0 = y_n,$$

 $k_j = k_{j-1} - \frac{1}{z_i} \tau f(k_{j-1}) \text{ for } j = 1, \dots, s,$
 $y_{n+1} = k_s.$

Disadvantage: when $|z_i|$ is small we do a large Euler step and the internal stages k_j become unstable. Solution by Lebedev (1994): sort the roots, group them two-by-two and use quadratic factors. Becomes tricky to implement.

G. Rosilho de Souza

Does such a method exists?

A better solution was given by Van der Houwen and Sommeijer (1980), which uses the recursive property

 $T_0(x) = 1$, $T_1(x) = x$, $T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$.

Runge-Kutta-Chebyshev (RKC) method

Set $s \in \mathbb{N}$ such that $\tau \rho \leq 2s^2$. Iterate

$$k_0 = y_n,$$

$$k_1 = k_0 + \mu_1 \tau f(k_0),$$

$$k_j = \nu_j k_{j-1} - \kappa_j k_{j-2} + \mu_j \tau f(k_{j-1}) \quad \text{for } j = 2, \dots, s,$$

$$y_{n+1} = k_s.$$

For $y' = \lambda y$ and $z = \tau \lambda$ it holds

$$k_j = T_j \left(1 + \frac{z}{s^2}\right) y_n$$
 and thus $y_{n+1} = T_s \left(1 + \frac{z}{s^2}\right) y_n = R_s(z) y_n$.

Cost of the RKC method

We estimate the cost, in the number of function evaluations, when integrating from t = 0 to t = 1.

• For RKC: take $\tau = 1$, since $\tau \rho \le 2s^2$ then $s = \sqrt{\rho/2}$:

$$C_{RKC} = s = \sqrt{\frac{
ho}{2}}.$$

• For explicit Euler: take $\tau = 2/\rho$ and $1/\tau$ time steps:

$$C_{EE} = \frac{1}{\tau} = \frac{\rho}{2}.$$

• For $\rho = C/h^2$:

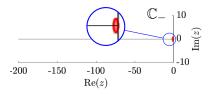
$$C_{RKC} = \sqrt{\frac{C}{2}} \frac{1}{h}, \qquad \qquad C_{EE} = \frac{C}{2} \frac{1}{h^2}.$$

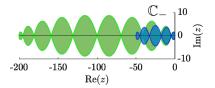
 Comparison with implicit Euler depends on a multitude of factors: system size, non linearity, preconditioners, parallelism,...

$$\mathcal{S} = \{ z \in \mathbb{C}_- : |R_s(z)| \le 1 \}$$

 ${\mathcal S}$ for explicit Euler.

S for s = 10, s = 5.



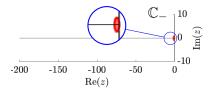


 Problem: unstable in imaginary direction.

$$\mathcal{S} = \{ z \in \mathbb{C}_- : |R_s(z)| \le 1 \}$$

 \mathcal{S} for explicit Euler.

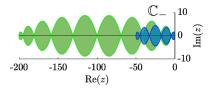
S for s = 10, s = 5.



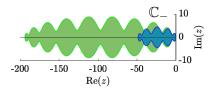
Problem: unstable in imaginary direction.

• Replace
$$T_s\left(1+\frac{z}{s^2}\right)$$
 by

$$R_s(z) = \frac{T_s(\omega_0 + \omega_1 z)}{T_s(\omega_0)}$$



S for s = 10, s = 5. Damped.



Numerical experiment

Solve
$$\partial_t u - \Delta u = f$$
 in $\Omega_\delta \times [0, T]$,
 $\nabla u \cdot \boldsymbol{n} = 0$ in $\partial \Omega_\delta \times [0, T]$,
 $u = 0$ in $\Omega_\delta \times \{0\}$,

in a domain Ω_{δ} containing a narrow channel of width δ

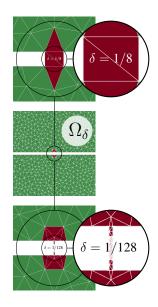
with first order DG in space

$$\partial_t u_h = \Delta_h u_h + f_h$$

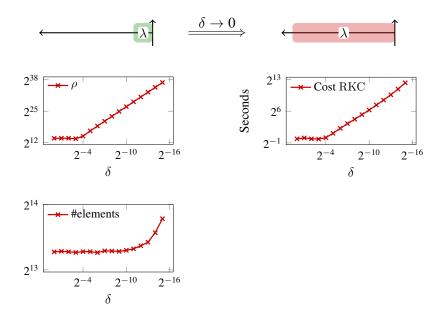
and RKC in time

$$au
ho_h \leq 2s^2 \implies s = \mathcal{O}\left(h^{-1}\right)$$

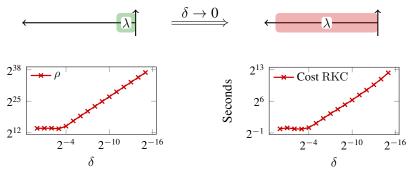
We fix $\tau = 0.01$ and monitor the performance of RKC as $\delta \rightarrow 0$.

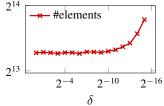


Numerical experiment



Numerical experiment





Conclusion

Stabilization of modes induced by a very few degrees of freedom comes at huge computational cost.

Multirate explicit stabilized methods

Problem statement

Multirate equation			
Solve the dissipative system	Term	Stiff ?	Cost ?
$y' = f_F(y) + f_S(y), t > 0,$	f_F	stiff	cheap
$y(0) = y_0.$	f_S	not stiff	expensive
	$f_F + f_S$	stiff	expensive

Examples:

- chemical systems with many slow reactions and a few fast reactions,
- highly integrated electrical circuits with latent and active components,
- parabolic problems on locally refined meshes,

...

Parabolic problem on locally refined mesh

Solve

$$\partial_t u - \Delta u + \boldsymbol{\beta} \cdot \nabla u + \mu u = 0.$$

Space discretization gives:

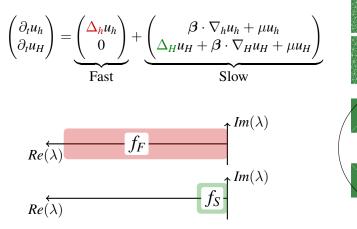
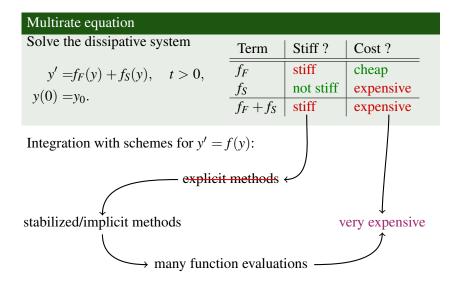


Figure. Spectrum of Δ_h and Δ_H .

G. Rosilho de Souza

Problem statement



Most of existing multirate methods

 have a spectrum clustering assumption, that is a clear partition between fast and slow variables (E, 2003),

- coupling of fast and slow variables done by *interpolation* or extrapolation => prone to *instabilities* and/or reduction of stability domain (Gear and Wells, 1984),
- when stable require solution of large and complex non linear systems (Ewing et al., 1990).

New explicit stabilized multirate method

Multirate RKC^2 method (Abdulle, Grote and Rosilho, 2019):

no assumption on spectrum clustering,

- no interpolations,
- fully explicit,
- proven to be stable on a large region close to the negative real axis.

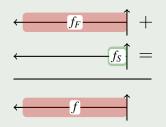
Idea

Shrink spectrum of f_F and integrate the modified system.

Original equation

$$y' = f(y) = f_F(y) + f_S(y).$$

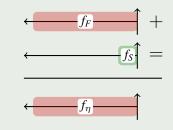
Spectral properties:



Modified equation

$$y'_{\eta} = f_{\eta}(y_{\eta}) \quad \text{with } \eta \ge 0.$$

For
$$\eta = 0$$
 it holds $f_{\eta} = f$ hence:



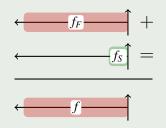
Idea

Shrink spectrum of f_F and integrate the modified system.

Original equation

$$y' = f(y) = f_F(y) + f_S(y).$$

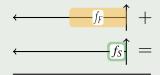
Spectral properties:



Modified equation

$$y'_{\eta} = f_{\eta}(y_{\eta}) \quad \text{with } \eta \ge 0.$$

For
$$\eta > 0$$
 then $f_{\eta} = f + \mathcal{O}(\eta)$



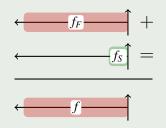
Idea

Shrink spectrum of f_F and integrate the modified system.

Original equation

$$y' = f(y) = f_F(y) + f_S(y).$$

Spectral properties:



Modified equation

$$y'_{\eta} = f_{\eta}(y_{\eta}) \quad \text{with } \eta \ge 0.$$

For
$$\eta > 0$$
 then $f_{\eta} = f + \mathcal{O}(\eta)$

Properties of f_{η}

•
$$f_{\eta} = f + \mathcal{O}(\eta),$$

• $\rho_\eta \ll \rho$.

Properties of f_n • $f_{\eta} = f + \mathcal{O}(\eta),$ • $\rho_\eta \ll \rho$. Towards the definition of f_n Let $u_0 \in \mathbb{R}^n$ and $u : [0, \eta] \to \mathbb{R}^n$ such that $u(0) = u_0,$ and *u* is smooth. Let cn.

$$f_{\eta}(u_0) = \frac{1}{\eta} \int_0^{\eta} f(u(s)) \,\mathrm{d}s.$$

Properties of f_{η} • $f_{\eta} = f + \mathcal{O}(\eta)$, \bigcirc • $\rho_{\eta} \ll \rho$. \bigcirc Towards the definition of f_{η} Let $u_0 \in \mathbb{R}^n$ and $u : [0, \eta] \to \mathbb{R}^n$ such that $u(0) = u_0$, and u' = f(u).

Let

$$f_{\eta}(u_0) = \frac{1}{\eta} \int_0^{\eta} f(u(s)) \, \mathrm{d}s = \frac{1}{\eta} (u(\eta) - u_0).$$

Properties of f_n • $f_{\eta} = f + \mathcal{O}(\eta),$ • $\rho_\eta \ll \rho$. Towards the definition of f_n Let $u_0 \in \mathbb{R}^n$ and $u : [0, \eta] \to \mathbb{R}^n$ such that $u(0) = u_0,$ and Let

$$f_{\eta}(u_0) = \frac{1}{\eta} \int_0^{\eta} f(u(s)) \, \mathrm{d}s = \frac{1}{\eta} (u(\eta) - u_0).$$

Definition of f_{η}

Properties of f_{η} • $f_{\eta} = f + \mathcal{O}(\eta)$, \checkmark • $\rho_{\eta} \ll \rho$. \checkmark Definition of f_{η}

Let $u_0 \in \mathbb{R}^n$ and $u : [0, \eta] \to \mathbb{R}^n$ such that

$$u(0) = u_0$$
, and $u' = f_F(u) + f_S(u_0)$.

Let

$$f_{\eta}(u_0) = \frac{1}{\eta} \int_0^{\eta} f_F(u(s)) \, \mathrm{d}s + f_S(u_0) = \frac{1}{\eta} (u(\eta) - u_0).$$

Advantages:

- Computations are cheap since the expensive term f_S is frozen.
- Stiffness is reduced since *f_F* is not frozen.

G. Rosilho de Souza

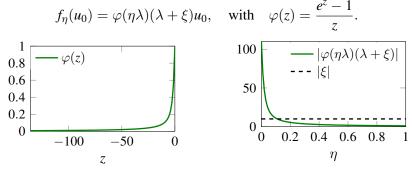
Multirate explicit stabilized integrators for stiff differential equations

Stability analysis

Let the multirate Dahlquist equation be defined by

$$y' = f_F(y) + f_S(y) = \lambda y + \xi y, \quad \lambda, \xi \le 0.$$

Then $u' = f_F(u) + f_S(u_0) = \lambda u + \xi u_0$ and it holds

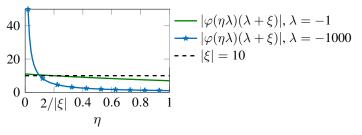


Goal: Choose η such that spectrum of f_{η} is similar to the one of f_S . Hence, we want $|\varphi(\eta\lambda)(\lambda+\xi)| \leq |\xi|$.

Lemma

It holds $|\varphi(\eta\lambda)(\lambda+\xi)| \leq |\xi|$ for all $\lambda \leq 0$ if and only if $\eta \geq 2/|\xi|$.

- For $\eta \ge 2/|\xi|$ the stiffness of f_{η} depends only on f_S .
- η depends only on ξ .
- True for all $\lambda \leq 0$, so there is no scale separation assumption.
- For a parabolic equation, λ and ξ represent the eigenvalues of the laplacians Δ_h and Δ_H. Since Δ_h has large and small eigenvalues it is important that the result holds for all λ ≤ 0.



Modified multirate equation

Solve

$$y'_{\eta} = f_{\eta}(y_{\eta}), \ t > 0, \qquad y_{\eta}(0) = y_{0}$$

with

$$f_{\eta}(u_0)=\frac{1}{\eta}(u(\eta)-u_0),$$

where *u* is defined by

 $u' = f_F(u) + f_S(u_0), \ t \in]0, \eta], \qquad u(0) = u_0, \qquad \eta = 2/\rho_S$

and ρ_S is the spectral radius of the Jacobian of f_S .

Modified multirate equation

Solve

with

$$y'_{\eta} = f_{\eta}(y_{\eta}), t > 0, \quad y_{\eta}(0) = y_{0}$$

with
 $f_{\eta}(u_{0}) = \frac{1}{\eta}(u(\eta) - u_{0}),$
where u is defined by
 $u' = f_{F}(u) + f_{S}(u_{0}), t \in]0, \eta], \quad u(0) = u_{0},$
and ρ_{S} is the spectral radius of the Jacobian of f_{S} .

Multirate RKC² scheme

Multirate RKC² scheme

Let $\tau > 0$ be the time step, integrate

$$y'_{\eta} = \overline{f}_{\eta}(y_{\eta}), \ t > 0, \qquad y_{\eta}(0) = y_{0},$$

using an RKC scheme with *m* stages, where $\tau \rho_S \leq 2m^2$. The right hand side \overline{f}_n is defined by

$$\bar{f}_{\eta}(u_0) = \frac{1}{\eta}(\bar{u}_{\eta} - u_0),$$

where \overline{u}_{η} is an approximation of $u(\eta)$, solution of

$$u' = f_F(u) + f_S(u_0), \ t \in]0, \eta], \qquad u(0) = u_0, \qquad \eta = ?,$$

obtained by one step of RKC with *s* stages, where $\eta \rho_F \leq 2s^2$.

Stability analysis of numerical \overline{f}_{η}

We apply the scheme to the multi rate Dahlquist equation

$$y' = f_F(y) + f_S(y) = \lambda y + \xi y$$

Hence $u' = \lambda u + \xi u_0$ and $s \in \mathbb{N}$ is such that $\eta |\lambda| \le 2s^2$. For \overline{u}_{η} :

$$k_{0} = u_{0},$$

$$k_{1} = k_{0} + \mu_{1}\eta(\lambda k_{0} + \xi u_{0}),$$

$$k_{j} = \nu_{j}k_{j-1} + \kappa_{j}k_{j-2} + \mu_{j}\eta(\lambda k_{j-1} + \xi u_{0}) \text{ for } j = 2, \dots s,$$

$$\overline{u}_{\eta} = k_{s}.$$

It can be shown by recursion that

$$\overline{u}_{\eta} = (R_s(\eta\lambda) + \Phi_s(\eta\lambda)\eta\xi)u_0,$$

with

$$\Phi_s(z) = \sum_{k=1}^s \beta_k U_k(\omega_0 + \omega_1 z)$$

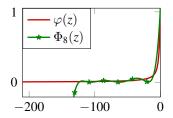
where $U_k(z)$ is a Chebyshev polynomial of the second kind of degree k and $\beta_k, \omega_0, \omega_1$ are parameters of the scheme.

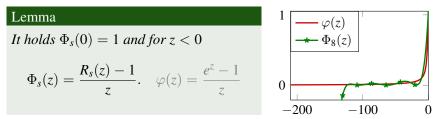
G. Rosilho de Souza

Lemma

It holds $\Phi_s(0) = 1$ and for z < 0

$$\Phi_s(z) = \frac{R_s(z) - 1}{z}, \quad \varphi(z) = \frac{e^z - 1}{z}$$





Which leads to

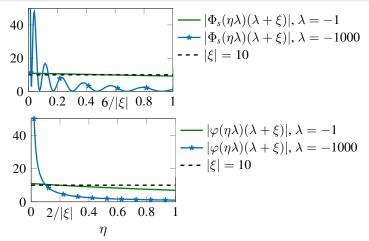
$$\bar{f}_{\eta}(u_0) = \Phi_s(\eta\lambda)(\lambda + \xi)u_0 \quad f_{\eta}(u_0) = \varphi(\eta\lambda)(\lambda + \xi)u_0$$

Goal: as before, we want the spectrum of \overline{f}_{η} to be similar to the one of f_s . Hence, we want $|\Phi_s(\eta\lambda)(\lambda+\xi)| \leq |\xi|$.

Stability analysis of numerical \overline{f}_{η}

Lemma

It holds $|\Phi_s(\eta\lambda)(\lambda+\xi)| \le |\xi|$ for $\eta\lambda \in [-2s^2, 0]$ if and only if $\eta \ge 6/|\xi|$. (we had $\eta \ge 2/|\xi|$)



We apply an RKC scheme to

$$y' = \overline{f}_{\eta}(y) = \Phi_s(\eta\lambda)(\lambda + \xi)y.$$

Let $m \in \mathbb{N}$ be such that $\tau |\xi| \leq 2m^2$, iterate

$$k_0 = y_n,$$

$$k_1 = k_0 + \mu_1 \tau \Phi_s(\eta \lambda)(\lambda + \xi)k_0,$$

$$k_j = \nu_j k_{j-1} + \kappa_j k_{j-2} + \mu_j \tau \Phi_s(\eta \lambda)(\lambda + \xi)k_{j-1} \quad \text{for } j = 2, \dots, m,$$

$$y_{n+1} = k_m.$$

Hence,

$$y_{n+1} = R_m(\tau \Phi_s(\eta \lambda)(\lambda + \xi))y_n.$$

Since $|\Phi_s(\eta\lambda)(\lambda+\xi)| \le |\xi|$ then $|R_m(\tau\Phi_s(\eta\lambda)(\lambda+\xi))| \le 1$.

Weakening the condition $\eta \ge 6/|\xi|$

• Problem: For $|\xi| \to 0$ then $\eta \to \infty$.

But,

$$|R_m(\tau\Phi_s(\eta\lambda)(\lambda+\xi))| \le 1$$

already for

$$\tau |\Phi_s(\eta \lambda)(\lambda + \xi)| \le 2m^2,$$

 $|\Phi_s(\eta\lambda)(\lambda+\xi)| \le |\xi|$ is too strong.

- $\eta \ge 3\tau/m^2$ is enough for stability.
- The parameter η depends on the stabilization procedure for |ξ|, not on |ξ| itself.
- In practice

$$\eta = 3\frac{\tau}{m^2} = \mathcal{O}(\tau)$$
 and generally $\eta \ll \tau$.

• It follows that the multirate scheme is first order accurate.

Multirate RKC² scheme

Multirate RKC² scheme

Let $\tau > 0$ be the time step, integrate

$$y'_{\eta} = \overline{f}_{\eta}(y_{\eta}), \ t > 0, \qquad y_{\eta}(0) = y_{0}$$

using an RKC scheme with *m* stages, where $\tau \rho_S \leq 2m^2$. The right hand side \overline{f}_n is defined by

$$\overline{f}_{\eta}(u_0) = \frac{1}{\eta}(\overline{u}_{\eta} - u_0),$$

where \overline{u}_{η} is an approximation of $u(\eta)$, solution of

$$u' = f_F(u) + f_S(u_0), \ t \in]0, \eta]$$
 $u(0) = u_0, \ \eta = 3\tau/m^2,$

obtained by one step of RKC with *s* stages, where $\eta \rho_F \leq 2s^2$.

Theorem

The multirate RKC^2 scheme has first order of accuracy and is stable.

Numerical experiment

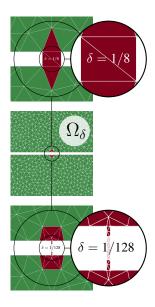
Solve

$$\begin{array}{ll} \partial_t u - \Delta u = f & \quad \text{in } \Omega_\delta \times [0, T], \\ \nabla u \cdot \boldsymbol{n} = 0 & \quad \text{in } \partial \Omega_\delta \times [0, T], \\ u = 0 & \quad \text{in } \Omega_\delta \times \{0\}, \end{array}$$

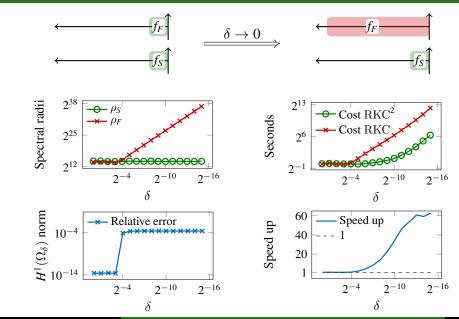
- first order DG in space,
- RKC² and RKC in time.

We let $\delta \rightarrow 0$ and compare the performance of RKC² against the one of standard RKC.

$$\begin{pmatrix} \partial_t u_h \\ \partial_t u_H \end{pmatrix} = \underbrace{\begin{pmatrix} \Delta_h u_h \\ 0 \end{pmatrix}}_{\text{Fast}} + \underbrace{\begin{pmatrix} f_h \\ \Delta_H u_H + f_H \end{pmatrix}}_{\text{Slow}}$$



Numerical experiment



G. Rosilho de Souza

Thank you for your attention!

- E, W. (2003). Analysis of the heterogeneous multiscale method for ordinary differential equations. *Communications in Mathematical Sciences*, 1(3):423–436.
- Ewing, R. E., Lazarov, R. D., and Vassilevski, P. S. (1990). Finite difference schemes on grids with local refinement in time and space for parabolic problems I. Derivation, stability, and error analysis. *Computing*, 45(3):193–215.
- Gear, C. W. and Wells, D. R. (1984). Multirate linear multistep methods. *BIT Numerical Mathematics*, 24(4):484–502.
- Guillou, A. and Lago, B. (1960). Domaine de stabilité associé aux formules d'intégration numérique d'équations différentielles, à pas séparés et à pas liés. Recherche de formules à grand rayon de stabilité. In *Ier Congr. Ass. Fran. Calcul., AFCAL*, pages 43–56, Grenoble.
- Lebedev, V. I. (1994). How to solve stiff systems of differential equations by explicit methods. In *Numerical methods and applications*, pages 45–80. CRC, Boca Raton, FL.

- Markoff, W. (1916). Uber Polynome, die in einem gegebenen Intervall möglichst wenig yon Null abweichen. *Mathematische Annalen*, 77(2):213–258.
- Van der Houwen, P. J. and Sommeijer, B. P. (1980). On the internal stability of explicit, *m*-stage Runge–Kutta methods for large *m*-values. Zeitschrift für Angewandte Mathematik und Mechanik, 60(10):479–485.