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Explicit stabilized integrators for stiff
differential equations



Motivating explicit stabilized methods

Stiff ordinary differential equation

y′ =f (y), t > 0,

y(0) =y0.

C− Im(λ)

Re(λ)
λ(∂f/∂y)

Explicit Euler

yn+1 = yn + τ f (yn)

� Straightforward to
implement,

� cheap to evaluate.

Implicit Euler

yn+1 = yn + τ f (yn+1)

� Needs non linear solver
routine, preconditioners,

� expensive.
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Motivating explicit stabilized methods

Dahlquist test equation

y′ =λy, t > 0,

y(0) =y0.

C− Im(λ)

Re(λ)
λ

Explicit Euler

yn+1 =(1 + τλ)yn

=R(τλ)yn

� R(z) = 1 + z,
� |R(z)| ≤ 1 for z ∈ [−2, 0],
� stability condition τ ≤ 2

|λ| .

Implicit Euler

yn+1 =(1− τλ)−1yn

=R(τλ)yn

� R(z) = (1− z)−1

� |R(z)| ≤ 1 for all Re(z) ≤ 0,
� unconditionally stable.
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Motivating explicit stabilized methods

Space discretized parabolic equation

y′ =∆hy, t > 0,

y(0) =y0,

C− Im(λ)

Re(λ)
λ ∈ [−C/h2, 0]

where h is the smallest element size.

Explicit Euler

yn+1 = (I + τ∆h)yn,

with

τ ≤ 2
|λ|

= O
(

h2
)
.

Implicit Euler

yn+1 = (I − τ∆h)−1yn,

hence

large system to solve.
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Construction of explicit stabilized Runge–Kutta methods

Goal

Given a fixed number of stages s, find a first order explicit scheme
with maximal stability domain along the negative real axis.

The stability polynomial of such a scheme solves the following

Optimization problem (Markoff, 1916; Guillou and Lago, 1960)

Find a polynomial Rs(x) of degree s satisfying

Rs(0) = R′s(0) = 1

and
|Rs(z)| ≤ 1 for z ∈ [−`s, 0] with `s maximal.
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Solution to the optimization problem

Chebyshev polynomials of the first kind are defined recursively by

T0(x) =1, T1(x) =x, Tn(x) =2xTn−1(x)− Tn−2(x)

and satisfy

Tn(1) =1, T ′n(1) =n2, |Ts(x)| ≤ 1 for all x ∈ [−1, 1].

Thus,

Rs(z) =Ts

(
1 +

z
s2

)
satisfies

{
Rs(0) = R′s(0) = 1,
|Rs(z)| ≤ 1 ∀ z ∈ [−2s2, 0].

0−50−100−150−200
−1

0

1

z

R5(z)
R10(z)
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Consequences

� For each s, there is a first order accurate polynomial Rs(z)
satisfying |Rs(z)| ≤ 1 for all z ∈ [−2s2, 0].

� If there exists a Runge–Kutta scheme having Rs(z) as stability
polynomial, the stability condition on that scheme would be

τλ ∈[−2s2, 0] ∀λ = λ

(
∂f
∂y

)
⇐⇒

τρ ≤2s2 ρ = ρ

(
∂f
∂y

)
.

� If such a scheme exists for all s, instead of adapting the step size
τ we can change scheme and take s larger.

� There is no step size restriction.
� The size of the stability domain of this family of Runge–Kutta

schemes grows quadratically with the number of stages.
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Does such a method exists?

First solution was given by Guillou and Lago (1960), the idea is to
write

Rs(z) =

s∏
j=1

(
1− 1

zi
z
)
, with zi roots of Rs(z).

And represent the scheme as composition of Euler steps:

k0 =yn,

kj =kj−1 −
1
zi
τ f (kj−1) for j = 1, . . . , s,

yn+1 =ks.

Disadvantage: when |zi| is small we do a large Euler step and the
internal stages kj become unstable.
Solution by Lebedev (1994): sort the roots, group them two-by-two
and use quadratic factors. Becomes tricky to implement.
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Does such a method exists?

A better solution was given by Van der Houwen and Sommeijer
(1980), which uses the recursive property

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x).

Runge–Kutta–Chebyshev (RKC) method

Set s ∈ N such that τρ ≤ 2s2. Iterate

k0 =yn,

k1 =k0 + µ1τ f (k0),

kj =νjkj−1 − κjkj−2 + µjτ f (kj−1) for j = 2, . . . , s,

yn+1 =ks.

For y′ = λy and z = τλ it holds

kj =Tj

(
1 +

z
s2

)
yn and thus yn+1 =Ts

(
1 +

z
s2

)
yn = Rs(z)yn.
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Cost of the RKC method

We estimate the cost, in the number of function evaluations, when
integrating from t = 0 to t = 1.

� For RKC: take τ = 1, since τρ ≤ 2s2 then s =
√
ρ/2:

CRKC = s =

√
ρ

2
.

� For explicit Euler: take τ = 2/ρ and 1/τ time steps:

CEE =
1
τ

=
ρ

2
.

� For ρ = C/h2:

CRKC =

√
C
2

1
h
, CEE =

C
2

1
h2 .

� Comparison with implicit Euler depends on a multitude of
factors: system size, non linearity, preconditioners, parallelism,...
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Stability domain

S = {z ∈ C− : |Rs(z)| ≤ 1}

C−

S for explicit Euler.

C−

S for explicit Euler.

C−

S for s = 10, s = 5.

� Problem: unstable in
imaginary direction.

� Replace Ts

(
1 + z

s2

)
by

Rs(z) =
Ts(ω0 + ω1z)

Ts(ω0)
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� Problem: unstable in
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(
1 + z

s2

)
by

Rs(z) =
Ts(ω0 + ω1z)

Ts(ω0)

C−

S for s = 10, s = 5. Damped.
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Numerical experiment

Solve ∂tu−∆u = f in Ωδ × [0,T],

∇u · n = 0 in ∂Ωδ × [0,T],

u = 0 in Ωδ × {0},

in a domain Ωδ containing a narrow channel
of width δ

� with first order DG in space

∂tuh = ∆huh + fh

� and RKC in time

τρh ≤ 2s2 =⇒ s = O
(

h−1
)

We fix τ = 0.01 and monitor the
performance of RKC as δ → 0.

Ωδ

δ = 1/128

δ = 1/8

Ωδ

δ = 1/128

δ = 1/8

Ωδ

δ = 1/128

δ = 1/8
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Numerical experiment

λ
δ → 0

λ

2−162−102−4
212

225

238

δ

ρ

2−162−102−4
2−1

26

213

δ

Se
co

nd
s Cost RKC

2−162−102−4
213

214

δ

#elements

Conclusion
Stabilization of modes induced by
a very few degrees of freedom
comes at huge computational cost.
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Multirate explicit stabilized methods



Problem statement

Multirate equation
Solve the dissipative system

y′ =fF(y) + fS(y), t > 0,

y(0) =y0.

Term Stiff ? Cost ?
fF stiff cheap
fS not stiff expensive
fF + fS stiff expensive

Examples:
� chemical systems with many slow reactions and a few fast

reactions,
� highly integrated electrical circuits with latent and active

components,
� parabolic problems on locally refined meshes,
� ...
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Parabolic problem on locally refined mesh
Solve

∂tu−∆u + β · ∇u + µu = 0.

Space discretization gives:(
∂tuh
∂tuH

)
=

(
∆huh

0

)
︸ ︷︷ ︸

Fast

+

(
β · ∇huh + µuh

∆HuH + β · ∇HuH + µuH

)
︸ ︷︷ ︸

Slow

Im(λ)

Re(λ)

Im(λ)

Re(λ)

fF

fS

Figure. Spectrum of ∆h and ∆H .
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Problem statement

Multirate equation
Solve the dissipative system

y′ =fF(y) + fS(y), t > 0,

y(0) =y0.

Term Stiff ? Cost ?
fF stiff cheap
fS not stiff expensive
fF + fS stiff expensive

Integration with schemes for y′ = f (y):

explicit methods

stabilized/implicit methods

many function evaluations

very expensive
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Literature review

Most of existing multirate methods
� have a spectrum clustering assumption, that is a clear partition

between fast and slow variables (E, 2003),

fF

fS

fF

fS

� coupling of fast and slow variables done by interpolation or
extrapolation =⇒ prone to instabilities and/or reduction of
stability domain (Gear and Wells, 1984),

� when stable require solution of large and complex non linear
systems (Ewing et al., 1990).
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New explicit stabilized multirate method

Multirate RKC2 method (Abdulle, Grote and Rosilho, 2019): (?)

� no assumption on spectrum clustering,

fF

fS

fF

fS

� no interpolations,
� fully explicit,
� proven to be stable on a large region close to the negative real

axis.
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Modified multirate equation

Idea

Shrink spectrum of fF and integrate the modified system.

Original equation

y′ = f (y) = fF(y) + fS(y).

Spectral properties:

fF

fS

+

=

f

Modified equation

y′η = fη(yη) with η ≥ 0.

For η = 0 it holds fη = f hence:

fF

fS

+

=

fη
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Motivating the definition of fη

Properties of fη

� fη = f +O (η), � ρη � ρ.

Towards the definition of fη

Let u0 ∈ Rn and u : [0, η]→ Rn such that

u(0) = u0.

and

Let

fη(u0) =
1
η

∫ η

0
f (u(s)) ds.

=
1
η

(u(η)− u0).
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Definition of fη

Properties of fη

� fη = f +O (η), � ρη � ρ.

Definition of fη

Let u0 ∈ Rn and u : [0, η]→ Rn such that

u(0) = u0, and u′ = fF(u) + fS(u0).

Let

fη(u0) =
1
η

∫ η

0
fF(u(s)) ds + fS(u0) =

1
η

(u(η)− u0).

Advantages:
� Computations are cheap since the expensive term fS is frozen.
� Stiffness is reduced since fF is not frozen.
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Stability analysis

Let the multirate Dahlquist equation be defined by

y′ = fF(y) + fS(y) = λy + ξy, λ, ξ ≤ 0.

Then u′ = fF(u) + fS(u0) = λu + ξu0 and it holds

fη(u0) = ϕ(ηλ)(λ+ ξ)u0, with ϕ(z) =
ez − 1

z
.

−100 −50 0
0

0.2
0.4
0.6
0.8

1

z

ϕ(z)

0 0.2 0.4 0.6 0.8 1
0

50

100

η

|ϕ(ηλ)(λ+ ξ)|
|ξ|

Goal: Choose η such that spectrum of fη is similar to the one of fS.
Hence, we want |ϕ(ηλ)(λ+ ξ)| ≤ |ξ|.
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Stability analysis

Lemma

It holds |ϕ(ηλ)(λ+ ξ)| ≤ |ξ| for all λ ≤ 0 if and only if η ≥ 2/|ξ|.

� For η ≥ 2/|ξ| the stiffness of fη depends only on fS.
� η depends only on ξ.
� True for all λ ≤ 0, so there is no scale separation assumption.
� For a parabolic equation, λ and ξ represent the eigenvalues of the

laplacians ∆h and ∆H . Since ∆h has large and small eigenvalues
it is important that the result holds for all λ ≤ 0.

0 2/|ξ| 0.4 0.6 0.8 1
0

20

40

η

|ϕ(ηλ)(λ+ ξ)|, λ = −1
|ϕ(ηλ)(λ+ ξ)|, λ = −1000
|ξ| = 10
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Modified multirate equation

Modified multirate equation

Solve

y′η = fη(yη), t > 0, yη(0) = y0

with

fη(u0) =
1
η

(u(η)− u0),

where u is defined by

u′ = fF(u) + fS(u0), t ∈]0, η], u(0) = u0, η = 2/ρS

and ρS is the spectral radius of the Jacobian of fS.

Integrated numerically =⇒ different stability properties
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Multirate RKC2 scheme

Multirate RKC2 scheme

Let τ > 0 be the time step, integrate

y′η = f η(yη), t > 0, yη(0) = y0,

using an RKC scheme with m stages, where τρS ≤ 2m2.
The right hand side f η is defined by

f η(u0) =
1
η

(uη − u0),

where uη is an approximation of u(η), solution of

u′ = fF(u) + fS(u0), t ∈]0, η], u(0) = u0, η = ?,

obtained by one step of RKC with s stages, where ηρF ≤ 2s2.
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Stability analysis of numerical f η
We apply the scheme to the multi rate Dahlquist equation

y′ = fF(y) + fS(y) = λy + ξy

Hence u′ = λu + ξu0 and s ∈ N is such that η|λ| ≤ 2s2. For uη:

k0 =u0,

k1 =k0 + µ1η(λk0 + ξu0),

kj =νjkj−1 + κjkj−2 + µjη(λkj−1 + ξu0) for j = 2, . . . s,

uη =ks.

It can be shown by recursion that

uη = (Rs(ηλ) + Φs(ηλ)ηξ)u0,

with
Φs(z) =

∑s
k=1 βkUk(ω0 + ω1z)

where Uk(z) is a Chebyshev polynomial of the second kind of degree
k and βk, ω0, ω1 are parameters of the scheme.
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Stability analysis of numerical f η

Lemma

It holds Φs(0) = 1 and for z < 0

Φs(z) =
Rs(z)− 1

z
. ϕ(z) =

ez − 1
z

0−100−200

0

1
ϕ(z)
Φ8(z)

Which leads to

f η(u0) = Φs(ηλ)(λ+ ξ)u0 fη(u0) = ϕ(ηλ)(λ+ ξ)u0

Goal: as before, we want the spectrum of f η to be similar to the one
of fS. Hence, we want |Φs(ηλ)(λ+ ξ)| ≤ |ξ|.
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Stability analysis of numerical f η

Lemma

It holds |Φs(ηλ)(λ+ ξ)| ≤ |ξ| for ηλ ∈ [−2s2, 0] if and only if
η ≥ 6/|ξ|. (we had η ≥ 2/|ξ|)

0 0.2 0.4 6/|ξ| 0.8 1
0

20

40 |Φs(ηλ)(λ+ ξ)|, λ = −1
|Φs(ηλ)(λ+ ξ)|, λ = −1000
|ξ| = 10

0 2/|ξ| 0.4 0.6 0.8 1
0

20

40

η

|ϕ(ηλ)(λ+ ξ)|, λ = −1
|ϕ(ηλ)(λ+ ξ)|, λ = −1000
|ξ| = 10
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Integration of y′ = f η

We apply an RKC scheme to

y′ = f η(y) = Φs(ηλ)(λ+ ξ)y.

Let m ∈ N be such that τ |ξ| ≤ 2m2, iterate

k0 =yn,

k1 =k0 + µ1τΦs(ηλ)(λ+ ξ)k0,

kj =νjkj−1 + κjkj−2 + µjτΦs(ηλ)(λ+ ξ)kj−1 for j = 2, . . . ,m,

yn+1 =km.

Hence,
yn+1 = Rm(τΦs(ηλ)(λ+ ξ))yn.

Since |Φs(ηλ)(λ+ ξ)| ≤ |ξ| then |Rm(τΦs(ηλ)(λ+ ξ))| ≤ 1.
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Weakening the condition η ≥ 6/|ξ|

� Problem: For |ξ| → 0 then η →∞.
� But,

|Rm(τΦs(ηλ)(λ+ ξ))| ≤ 1

already for

τ |Φs(ηλ)(λ+ ξ)| ≤ 2m2,

|Φs(ηλ)(λ+ ξ)| ≤ |ξ| is too strong.
� η ≥ 3τ/m2 is enough for stability.
� The parameter η depends on the stabilization procedure for |ξ|,

not on |ξ| itself.
� In practice

η = 3
τ

m2 = O (τ) and generally η � τ.

� It follows that the multirate scheme is first order accurate.
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Multirate RKC2 scheme

Multirate RKC2 scheme

Let τ > 0 be the time step, integrate

y′η = f η(yη), t > 0, yη(0) = y0

using an RKC scheme with m stages, where τρS ≤ 2m2.
The right hand side f η is defined by

f η(u0) = 1
η (uη − u0),

where uη is an approximation of u(η), solution of

u′ = fF(u) + fS(u0), t ∈]0, η] u(0) = u0, η = 3τ/m2,

obtained by one step of RKC with s stages, where ηρF ≤ 2s2.

Theorem

The multirate RKC2 scheme has first order of accuracy and is stable.
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Numerical experiment

Solve

∂tu−∆u = f in Ωδ × [0,T],

∇u · n = 0 in ∂Ωδ × [0,T],

u = 0 in Ωδ × {0},

� first order DG in space,
� RKC2 and RKC in time.

We let δ → 0 and compare the performance
of RKC2 against the one of standard RKC.(

∂tuh
∂tuH

)
=

(
∆huh

0

)
︸ ︷︷ ︸

Fast

+

(
fh

∆HuH + fH

)
︸ ︷︷ ︸

Slow

Ωδ

δ = 1/128

δ = 1/8

Ωδ

δ = 1/128

δ = 1/8

Ωδ

δ = 1/128

δ = 1/8
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Numerical experiment
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