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Problem statement

Multirate equation
Solve the dissipative system

y′ =fF(y) + fS(y), t > 0,

y(0) =y0.

Term Stiff ? Cost ?
fF stiff cheap
fS not stiff expensive
fF + fS stiff expensive

Examples:
� chemical systems with many slow reactions and a few fast

reactions,
� highly integrated electrical circuits with latent and active

components,
� parabolic problems on locally refined meshes,
� ...
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Parabolic problem on locally refined mesh
Solve

∂tu−∆u + β · ∇u + µu = 0.

Space discretization gives:(
∂tuh
∂tuH

)
=

(
∆huh

0

)
︸ ︷︷ ︸

Fast

+

(
β · ∇huh + µuh

∆HuH + β · ∇HuH + µuH

)
︸ ︷︷ ︸

Slow
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Figure. Spectrum of ∆h and ∆H .
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Problem statement

Multirate equation
Solve the dissipative system

y′ =fF(y) + fS(y), t > 0,

y(0) =y0.

Term Stiff ? Cost ?
fF stiff cheap
fS not stiff expensive
fF + fS stiff expensive

Integration with schemes for y′ = f (y):

explicit methods

stabilized/implicit methods

many function evaluations

very expensive
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Problem statement

Multirate equation
Solve the dissipative system

y′ =fF(y) + fS(y), t > 0,

y(0) =y0.

Term Stiff ? Cost ?
fF stiff cheap
fS not stiff expensive
fF + fS stiff expensive

Integration with schemes for y′ = f (y):

explicit methods

stabilized/implicit methods

many function evaluations

very expensiveUse multirate schemes!
Exploit special structure fF + fS
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Literature review

Most of existing multirate methods
� have a spectrum clustering assumption, that is a clear partition

between fast and slow variables (E, 2003),

fF

fS

fF

fS

� coupling of fast and slow variables done by interpolation or
extrapolation =⇒ prone to instabilities and/or reduction of
stability domain (Gear and Wells, 1984),

� when stable require solution of large and complex non linear
systems (Ewing et al., 1990).
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New explicit stabilized multirate method

Multirate RKC2 method (Abdulle, Grote and Rosilho, 2019): (Abdulle et al., 2019)

� no assumption on spectrum clustering,

fF

fS

fF

fS

� no interpolations,
� fully explicit,
� proven to be stable on a large region close to the negative real

axis.
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Modified multirate equation

Idea

Shrink spectrum of fF and integrate the modified system.

Original equation

y′ = f (y) = fF(y) + fS(y).

Spectral properties:

fF

fS

+

=

f

Modified equation

y′η = fη(yη) with η ≥ 0.

For η = 0 it holds fη = f hence:

fF

fS

+

=

fη
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Motivating the definition of fη
Properties of fη

� fη = f +O (η), � ρη � ρ.

Towards the definition of fη

Let u0 ∈ Rn and u : [0, η]→ Rn such that

u(0) = u0.

and

Let

fη(u0) =
1
η

∫ η

0
f (u(s)) ds.

=
1
η

(u(η)− u0).
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Towards the definition of fη

Let u0 ∈ Rn and u : [0, η]→ Rn such that

u(0) = u0, and u is smooth.

Let
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Definition of fη
Properties of fη

� fη = f +O (η), � ρη � ρ.

Definition of fη

Let u0 ∈ Rn and u : [0, η]→ Rn such that

u(0) = u0, and u′ = fF(u) + fS(u0).

Let

fη(u0) =
1
η

∫ η

0
fF(u(s)) ds + fS(u0) =

1
η

(u(η)− u0).

Advantages:
� Computations are cheap since the expensive term fS is frozen.
� Stiffness is reduced since fF is not frozen.
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Stability analysis

Let the multirate Dahlquist equation be defined by

y′ = fF(y) + fS(y) = λy + ξy, λ, ξ ≤ 0.

Then u′ = fF(u) + fS(u0) = λu + ξu0 and it holds

fη(u0) = ϕ(ηλ)(λ+ ξ)u0, with ϕ(z) =
ez − 1

z
.

Goal: Choose η such that spectrum of fη is similar to the one of fS.
Hence, we want |ϕ(ηλ)(λ+ ξ)| ≤ |ξ|.

Lemma

It holds |ϕ(ηλ)(λ+ ξ)| ≤ |ξ| for all λ ≤ 0 if and only if η ≥ 2/|ξ|.

Hence, for η ≥ 2/|ξ| the stiffness of fη depends only on fS!
Observe that η depends only on ξ.
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Modified multirate equation

Modified multirate equation

Solve

y′η = fη(yη), t > 0, yη(0) = y0

with

fη(u0) =
1
η

(u(η)− u0),

where u is defined by

u′ = fF(u) + fS(u0), t ∈]0, η], u(0) = u0, η = 2/ρS

and ρS is the spectral radius of the Jacobian of fS.

Integrated numerically =⇒ different stability properties
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Runge–Kutta–Chebyshev schemes
Explicit stabilized schemes have a stability region that grows
quadratically with the number of stages.

Explicit Euler

� Applied to y′ = λy gives
y1 = R(τλ)y0 with

� R(z) = 1 + z,
� |R(z)| ≤ 1 for z ∈ [−2, 0].

C−

Stability domain explicit Euler.

C−

Stability domain explicit Euler. Runge–Kutta–Chebyshev (RKC)

� Applied to y′ = λy gives
y1 = Rs(τλ)y0 with

� Rs(z) = 1 + z +
∑s

i=2 αizi,
� |Rs(z)| ≤ 1 for z ∈ [−2s2, 0].

C−

Stability domain for s = 10, s = 5.
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Runge–Kutta–Chebyshev schemes

The stability polynomial Rs(z) is a shifted Chebyshev polynomial of
the first kind of degree s. It satisfies a recurrence relation

� k0 = 1, k1 = 1 + µ1z,
� kj = νjkj−1 + κjkj−2 + µjzkj−1 for j = 2, ..., s,
� Rs(z) = ks.

From which follows the RKC scheme.

RKC scheme for y′ = f (y)

� Let τ > 0 be the time step and ρ spectral radius of ∂f/∂y.
� Let s ∈ N such that τρ ≤ 2s2. (stability condition)
� k0 = y0, k1 = k0 + µ1τ f (k0),
� kj = νjkj−1 + κjkj−2 + µjτ f (kj−1) for j = 2, ..., s,
� y1 = ks.
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Modified multirate equation

Modified multirate equation

Solve

y′η = fη(yη), t > 0, yη(0) = y0

with

fη(u0) =
1
η

(u(η)− u0),

where u is defined by

u′ = fF(u) + fS(u0), t ∈]0, η], u(0) = u0, η = 2/ρS

and ρS is the spectral radius of the Jacobian of fS.
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Multirate RKC2 scheme

Multirate RKC2 scheme

Let τ > 0 be the time step, integrate

y′η = f η(yη), t > 0, yη(0) = y0,

using an RKC scheme with m stages, where τρη ≤ 2m2.
The right hand side f η is defined by

f η(u0) =
1
η

(uη − u0),

where uη is an approximation of u(η), solution of

u′ = fF(u) + fS(u0), t ∈]0, η], u(0) = u0, η = ?,

obtained by one step of RKC with s stages, where ηρF ≤ 2s2.
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Stability analysis of numerical f η
We apply the scheme to the multi rate Dahlquist equation

y′ = fF(y) + fS(y) = λy + ξy

Hence u′ = λu + ξu0 and s ∈ N is chosen such that η|λ| ≤ 2s2. We
obtain (shown by recursion)

uη = (Rs(ηλ) + Φs(ηλ)ηξ)u0,

with

Φs(z) =
∑s

k=1 βkUk(ω0 + ω1z)

where Uk(z) is a Chebyshev polynomial of the second kind of degree
k and βk, ω0, ω1 are parameters of the scheme. Then,

f η(u0)=
1
η

(uη − u0) =
1
η

(Rs(ηλ) + Φs(ηλ)ηξ − 1)u0

fη(u0)= ϕ(ηλ)(λ+ ξ)u0
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Stability analysis of numerical f η

Lemma

It holds Φs(0) = 1 and for z < 0

Φs(z) =
Rs(z)− 1

z
. ϕ(z) =

ez − 1
z

0−100−200

0

1
ϕ(z)
Φ8(z)

Which leads to

f η(u0) = Φs(ηλ)(λ+ ξ)u0 fη(u0) = ϕ(ηλ)(λ+ ξ)u0

Goal: as before, we want the spectrum of f η to be similar to the one
of fS. Hence, we want |Φs(ηλ)(λ+ ξ)| ≤ |ξ|.

Lemma

It holds |Φs(ηλ)(λ+ ξ)| ≤ |ξ| for ηλ ∈ [−2s2, 0] if and only if
η ≥ 6/|ξ|. (we had η ≥ 2/|ξ|)
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Multirate RKC2 scheme

Multirate RKC2 scheme

Let τ > 0 be the time step, integrate

y′η = f η(yη), t > 0, yη(0) = y0

using an RKC scheme with m stages, where τρS ≤ 2m2.
The right hand side f η is defined by

f η(u0) = 1
η (uη − u0),

where uη is an approximation of u(η), solution of

u′ = fF(u) + fS(u0), t ∈]0, η] u(0) = u0, η = 6/ρS,

obtained by one step of RKC with s stages, where ηρF ≤ 2s2.

Theorem

The multirate RKC2 scheme has first order of accuracy and is stable.
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Numerical experiment

Solve

∂tu−∆u = f in Ωδ × [0,T],

∇u · n = 0 in ∂Ωδ × [0,T],

u = 0 in Ωδ × {0},

� first order DG in space,
� RKC2 and RKC in time.

We let δ → 0 and compare the performance
of RKC2 against the one of standard RKC.(

∂tuh
∂tuH

)
=

(
∆huh

0

)
︸ ︷︷ ︸

Fast

+

(
fh

∆HuH + fH

)
︸ ︷︷ ︸

Slow

Ωδ

δ = 1/128

δ = 1/8

Ωδ

δ = 1/128

δ = 1/8

Ωδ

δ = 1/128

δ = 1/8
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Numerical experiment

fF

fS

δ → 0 fF

fS
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i

fS
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δ

H
1 (

Ω
δ
)

no
rm Relative error
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2−1
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213

δ

Se
co
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s Cost RKC2

Cost RKC
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δ

Sp
ee

d
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Speed up
1
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Future work

Natural directions to follow:
� When fF(y) = Ay, replace “inner” RKC scheme by exponential

Euler.
� Gives same stability as continuous modified equation,
� computation of eηA is faster than eτA since η � τ .

� Generalize to

dX(t) = fF(X(t)) dt + fS(X(t)) dt +

m∑
r=1

gr(X(t)) dWr(t)

replacing by

dXη(t) = fη(X(t)) dt + ???
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